
Here’s My Cert, So Trust Me, Maybe?
Understanding TLS Errors on the Web

Devdatta Akhawe
University of California,

Berkeley
devdatta@cs.berkeley.edu

Johanna Amann
International Computer

Science Institute, Berkeley
johanna@icir.org

Matthias Vallentin
University of California,

Berkeley
vallentin@cs.berkeley.edu

Robin Sommer
International Computer

Science Institute, Berkeley
robin@icir.org

ABSTRACT
When browsers report TLS errors, they cannot distinguish be-
tween attacks and harmless server misconfigurations; hence
they leave it to the user to decide whether continuing is
safe. However, actual attacks remain rare. As a result, users
quickly become used to “false positives” that deplete their
attention span, making it unlikely that they will pay suffi-
cient scrutiny when a real attack comes along. Consequently,
browser vendors should aim to minimize the number of low-
risk warnings they report. To guide that process, we perform
a large-scale measurement study of common TLS warnings.
Using a set of passive network monitors located at different
sites, we identify the prevalence of warnings for a total popu-
lation of about 300,000 users over a nine-month period. We
identify low-risk scenarios that consume a large chunk of the
user attention budget and make concrete recommendations
to browser vendors that will help maintain user attention
in high-risk situations. We study the impact on end users
with a data set much larger in scale than the data sets used
in previous TLS measurement studies. A key novelty of our
approach involves the use of internal browser code instead of
generic TLS libraries for analysis, providing more accurate
and representative results.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public Key Cryptosystems

Keywords
TLS; Warnings; Usability;

1. INTRODUCTION
The Transport Layer Security (TLS) protocol provides

secure channels between browsers and web servers, making it
fundamental to user security and privacy on the web. As a

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

critical step, TLS1 enables clients to verify a server’s identity
by validating its public-key certificate against a set of trusted
root authorities. If that validation fails browsers cannot
distinguish between actual attacks and benign errors (such
as a server misconfiguration). Instead, browsers display a
warning and ask the user to decide whether continuing is
safe.

Unfortunately, multiple studies have shown the proclivity
of users to click through browser warnings, thus negating
any security provided by TLS [22,43,44]. One reason is the
prevalence of warnings even under benign scenarios. User
attention is finite and excessive warnings tire users out, lead-
ing to “click-whirr” responses that just dismiss all warnings
without due thought [19]. Improvements in warning design
do not help here as they provide benefit only if users pay
attention to each and every warning [44].

Unfortunately, user attention is also shared : any website
that triggers a TLS warning depletes the pool. For example,
even if bank.com is cautious in its TLS deployment, warnings
due to incompetentsite.com can still tire users and train
them to click through all warnings. It remains a tragedy
of the commons that no individual web site has sufficient
incentive to conserve user attention.

We study TLS errors that trigger browser warnings. Based
on our study, we give recommendations on improving the
validation logic to treat the shared attention pool more re-
spectfully. For our discussion, we use the broad term false
warning to refer to any TLS-related dialog box raised during
the lifetime of connection unless it represents an indicator of
an actual man-in-the-middle (MITM) attack. This includes
errors due to server misconfiguration (e.g., incomplete cer-
tificate chains) as well as self-signed certificates and name
validation errors. We discuss the errors we study in more
detail in Section 5.2.

We base our study on an extensive data set containing
TLS activity of more than 300,000 users, collected passively
at egress points of ten operational network sites over a nine-
month period. Different from prior TLS analyses relying
on active scans (e.g., [12, 46]), our data set reflects what

1For ease of exposition, we use the term TLS to refer only
to the TLS protocol as used on the web, and not the TLS
protocol in its full generality.



users actually perceive as they browse the web, including
accounting for the heavy-tailed nature of website popularity.
Compared to a previous study of a passive collection [18],
our work encompasses a notably larger user population and
focuses on the user’s perspective.

Our results indicate a clear opportunity, and need, for
reducing false warnings. When examining all 3.9 billion TLS
connections in our data set, we find that 1.54% of them
trigger a false warning, an unacceptably high number since
benign scenarios are orders of magnitude more common than
attacks. In Section 6, we give concrete suggestions to reduce
the number of end-user warnings, based on an extensive
analysis of the cases triggering them.

A novelty of our work concerns the use of browser logic for
certificate validation, including all its quirks and optimiza-
tions. TLS implementations in browsers have evolved along
with specifications and exploits over the past fifteen years.
We noticed significant differences between results returned by
browser code compared to the results of using the OpenSSL
libraries relied on by previous work [18, 46]: we were able to
validate 95.97% of the chains in our database, as opposed
to 88.16% with OpenSSL. Section 4 further discusses the
subtleties of certificate validation in browsers.

In summary, we make the following contributions:

\bullet We discuss how browsers validate TLS certificates and
highlight the importance of relying on browser code
for such measurement studies. We identify scenarios
where the browser libraries differ from generic libraries
like OpenSSL (Section 4).

\bullet Using passive network measurement on a population
of about 300,000 users over a nine-month period, we
measure the frequency and nature of TLS errors on the
web (Section 5).

\bullet Based on our measurement, we make concrete recom-
mendations to browser vendors to reduce the amount
of false warnings (Section 6).

Our analysis code is available online [1]. During our re-
search, we also identified and reported two security and
privacy bugs in Firefox’s implementation of TLS [32,33].

We structure the rest of the paper as follows: after dis-
cussing related work in Section 2, Section 3 revisits TLS
and introduces the terminology we use. Section 4 discusses
how browsers validate certificates along with scenarios in
which their behavior diverges from libraries like OpenSSL.
Section 5 explains our measurement infrastructure and the
errors we study. Finally, we discuss the results and provide
recommendations in Section 6 before concluding in Section 7.

2. RELATED WORK
Warnings Science. Krosnick and Alwin’s dual path

model represents a standard model to understand human
behavior when faced with questions [20]. According to this
model, humans rely upon two distinct strategies when pre-
sented with a question. Users who optimize read and inter-
pret the question, retrieve relevant information from long-
term memory, and make a decision based on their disposition
and beliefs. In contrast, users who satisfice do not fully under-
stand the question, retrieve only salient cues from short-term
memory, and rely on simple heuristics to make a decision.

Grosklags et al. extend this model to argue that security
interface designers should treat user attention as a finite

resource, a lump of attention shared by all [4]. Consuming
user attention should happen infrequently, and uncontrolled
consumption can lead to a tragedy of the commons sce-
nario. Repetitive warnings cause habituation: once users
click through the same warning often enough, they will switch
from reading the warning to quickly clicking through without
reading (i.e., satisficing). Users pay less attention to each
subsequent warning, and this effect carries over to other, sim-
ilar warnings [4]. The link between repetition and satisficing
has been observed for Windows UAC dialogs, Android install-
time warnings, and browser security warnings [11,14,28,44].

Usability of Security Warnings. In 2005, an eye tracker
based study by Whalen et al. found that users rarely pay
attention to “passive” security indicators such as the lock
icon in web browsers [48]. Dhamija et al. challenged users
to recognize phishing attacks and found that 23% of their
subjects ignored phishing warnings while 68% ignored the
active, interstitial TLS warnings [8]. Similarly, Sunshine et
al. found users clicked through active warnings [44]. Sun-
shine et al. proposed an improved warning design based on
existing warning design literature, and observed noticeably
lower click-through rates with their new design. Neverthe-
less, a large number of users still clicked through the new
warnings, and the authors suggested research on reducing or
eliminating browser warnings. Our work constitutes a step
in that direction.

Sotirakopoulos et al. replicated the Sunshine study in 2010
and found that users learned how to bypass the new warning
design [43]. Further, they noted that user studies comparing
new warnings with old warnings exhibit a bias towards users
not accustomed to the new warnings. Their results indicate
that habituation, and not warning design, is the main cause
of high click-through rates in TLS warnings.

TLS Measurements. The past years witnessed a no-
ticeable increase of security incidents involving certificate
authorities, rendering the global certificate infrastructure an
attractive subject of study. The Electronic Frontier Foun-
dation (EFF) popularized the study of SSL infrastructure
by publishing certificate data sets obtained from actively
scanning the entire IPv4 address space on port 443 in mid-
2010 and in early 2012 [12], yielding 5.5 million [18] and
7.2 million [25] distinct certificates each. As we discuss in
Section 3, servers can rely on the SNI extension to dispatch
the correct certificate for a given domain. IP address scans
miss these certificates. They also cannot reliably determine
if the names in the certificate match the DNS names users
use to access the site.

Holz et al. [18] provide a comprehensive measurement of
the TLS infrastructure. In addition to incorporating the 2010
EFF data set, the authors crawl the top one million Alexa
domains from different vantage points, as well as gather cer-
tificate and connection data via passive network monitoring
of a German research network. They find that for their ac-
tive scan sets about 60% of the chains validate. Vratonjic et
al. [46] also crawl the top one million Alexa sites and extract
300,000 certificates (including 48% duplicates), of which only
16% validate.

Our work differs in scale and goals. We characterize TLS
behavior as seen for 300,000 users, on the wire. Studies
relying on the Alexa lists suffer from the biases of the Alexa
dataset [49]. Active scans and measurements based on rank-
ings give equal weight to all websites, which undermines their
accuracy due to the long-tailed nature of traffic on the web.



A key novelty of our work involves using the same code
that browsers use for validating certificates. Two examples
illustrate the importance of recreating the browser valida-
tion logic correctly. First, previous work used the OpenSSL
libraries, which do not cache previously seen intermediates.
This may result in a higher number of chain errors than that
experienced by end users. Second, Holz et al. focused only
on chain validation, and ignored name comparison for their
passive measurement. Validating the name in the certificate
with the DNS label that the user wanted to connect to is a
critical component of the validation process, and the only
protection TLS offers against a MITM attack. We explore
these subtleties further in Section 4.4.

Evolving TLS Trust Mechanisms. Recent work has
also explored alternatives to the CA trust system. Perspec-
tives [47] offers a SSH-like trust model to the existing PKI
infrastructure. Perspectives and its follow-up Convergence [6]
both rely on network views for trusting a certificate. Our
study makes similar assumptions, and implicitly trusts all
certificates seen on the network backbone.

Other proposals for alternate trust models include the Cer-
tificate Transparency project [23], the Country-based trust
model [42], and the Sovereign Keys proposal [45]. While
novel trust models hold the promise of reducing false warn-
ings, they are still nascent and widespread adoption will take
time. Our work focuses on the TLS landscape of today, but
we hope our measurements can influence the development of
these proposals.

3. BACKGROUND
In this section we give an overview of the TLS ecosystem,

define terminology that we will use for the rest of the paper,
and discuss the state of TLS support in browsers and web
servers. We also discuss the need for warnings in browsers
and the status quo of browser TLS warnings.

3.1 The TLS Ecosystem
TLS aims at providing end-to-end encryption for communi-

cation over the Internet. It uses public-key cryptography for
the initial key exchange, followed by symmetric encryption
for the rest of the protocol. The initial public-key handshake
requires the client to authenticate the server’s public key
through an out-of-band mechanism. After authenticating
the server, client and server negotiate a cipher suite and a
symmetric key to use for future communication.

The SSL protocol (TLS’s predecessor) originated as a
mechanism for encrypted communication on the web. Despite
its design as a generic transport layer mechanism, the web
remains its main user. Clients are usually browsers, and
servers typically web servers such as Apache httpd and
Microsoft IIS. Server authentication occurs via a certificate
signed by a trusted certification authority. Below we go into
the details of TLS as used in the web. As a running example,
we consider the case of a user Alice that wants to connect to
bob.com via TLS. bob.com relies on the Honest certification
authority to authenticate to Alice.

Concretely, when Alice visits https://www.bob.com, her
browser connects to www.bob.com over port 443 where the
server responds with a certificate. Then, the browser val-
idates that a trusted certification authority signed it, and
checks that it pertains to www.bob.com and no other host. If
these checks succeed, the browser uses the public key in the
certificate to setup a secure channel with www.bob.com.

3.1.1 Certification Authorities
Server authentication is critical to TLS’ guarantees against

an active network attacker. Certification authorities, or cer-
tificate authorities, or simply CAs, provide this functionality
on the web. At the minimum, CAs authenticate a server’s
public-key by signing a certificate tying a particular pub-
lic key to one or more DNS labels. For example, in the
certificate presented by www.bob.com, the Honest authority
certifies Bob’s public-key as belonging to www.bob.com. The
user agents (browsers) ship with a set of “trusted” CAs called
the root store. Server authentication proceeds only if an
authority in the root store signed the presented certificate.

Intermediate Authorities. A CA in the trusted root
store can also create and sign certificates for other interme-
diate CAs; the trust relationship is transitive. For example,
Bob can present a certificate signed by Carol, and Carol one
signed by Honest. The browser trusts Bob’s certificate if
Honest is part of the root store. This Bob\rightarrow Carol\rightarrow Honest
path forms a certificate chain. The intermediate certificate
can be part of the certificate sent by the web server, or the
web server (Bob) can provide a URL for an intermediate
(Carol) via the Authority Information Access (AIA) certifi-
cate extension. This reduces bandwidth use since the browser
can cache common intermediates. It also makes the TLS
server configuration easier, because the server operator does
not have to worry about providing a correct certificate chain
from the intermediate and up.

Authenticating Servers. A critical assumption of TLS
lies in the correctness of certificates issued by an authority. In
particular, Honest must only issue a certificate for www.bob.

com after validating that the public-key in question actually
belongs to the owner of www.bob.com. Typically, CAs rely
on email to the domain to verify ownership. Since email is
not a secure mechanism, an attacker on the path between
the authority and the owner of the website (bob.com) can
easily receive a certificate for the same (bob.com). Extended
validation (EV) certificates, indicated in the browser URL
bar by a distinctive green color and the name of the entity
owning the certificate, involve further checks, such as physical
presence requirements. It is not clear users understand the
difference between regular domain validated (DV) and EV
certificates. An attacker with a DV certificate can present it
in place of the legitimate domain’s EV certificate, and the
web browser will accept it. Only the missing green bar in
the browser interface would indicate the absence of an EV
certificate.

3.1.2 Web Servers
Web servers ask the CA for a certificate tying the public

key to their DNS label. When Alice connects to the web
server, the server presents this certificate, and Alice then
continues with the rest of the session.

Name-based virtual hosting complicates this simple sce-
nario. For example, consider the case of a web server that
hosts both bob.com and example.com. When the server re-
ceives a connection from Alice’s browser, it needs to know
which domain Alice wants to connect to so that it can present
the correct certificate. The Server Name Indication (SNI)
extension [10] allows a client to indicate the intended do-
main, allowing the server to return the appropriate certificate.
Apache’s httpd supports SNI since 2009, while Microsoft’s
IIS added support in 2012. As we discuss in Section 5.1, we
rely on SNI support in browsers (not servers) for our study.



Browsers have widespread support for SNI, as we discuss
below.

3.1.3 Browsers
As the most common client-facing component of TLS, web

browsers exert a tremendous influence on the evolution of
TLS. By controlling the root certificate store, browsers deter-
mine the list of CAs that the web relies on to provide security.
Furthermore, by supporting specific cipher suites and TLS
extensions browsers influence their widespread adoption.

As of this writing, all desktop browsers support TLS 1.0,
only Google Chrome supports TLS 1.1, and no desktop
browser supports TLS 1.2 by default. Further, all modern
desktop browsers support SNI. For mobile devices, Android
supports SNI since version 3.0 and iOS supports SNI since
version 4.0. Current versions of all major browsers, except
for Mozilla Firefox, support the AIA extension. All major
browsers also cache any valid intermediate certificates seen
in the past.2

3.2 TLS Warnings
Relevant to our work is the behavior of browsers in case of

a failure during server authentication. In addition to a man-
in-the-middle (MITM) attack, authentication failures also
occur in a wide variety of benign scenarios (Section 5.2). It is
difficult for browsers to distinguish malicious scenarios from
benign ones.3 Instead, browsers present users with a warning
page informing them of the error, and warning of a possible
MITM attack, for all authentication errors. Browsers also
allow users to bypass the warning, and continue with their
session; in effect, forcing the users to distinguish a benign
scenario (false warning) from a malicious one—a distinction
most users cannot make.

Warnings raised due to TLS errors belong to two broad
categories. First, there exist interstitial warnings shown when
the top-level page contains an error. This has been the focus
of previous warnings research in browsers. Another class
of warnings occur when secondary resources, e.g., images,
scripts, etc., result in a TLS error. Browsers currently show
a mixed content warning when secondary resources on a page
fail to load due to a TLS error.

Recall the Lump of Attention model (Section 2). Our study
assumes that mixed content and top-level page warnings both
consume user attention. Over-consumption of user attention
is an externality on the security of the whole TLS ecosystem.
Understanding the reasons for TLS warnings provides us
with insight into the current state of TLS, as well as concrete
guidance on areas to focus on for improvement. Reducing
the number of false warnings raised by browsers is key to
improving assurance in the TLS ecosystem. Rare warnings
encourage optimizing behavior over satisficing and push users
to understanding the warnings before making an informed
decision. This work focuses on understanding the prevalence
of TLS errors to enable reducing the number of warnings,
not on improved warning design. Previous work on warning
usability also stressed the importance of reducing the number
of warnings [43,44].

2During our research, we discovered that this caching occurs
even in Firefox’s private browsing mode (Bug 808331 [33]).
3In the case of websites with pinned certificates [5] or HSTS
support [16], browsers can make this distinction and show
an error instead of a warning.

4. BROWSER VALIDATION BEHAVIOR
Like most complex web standards, certificate validation

logic in browsers evolved simultaneously with and ahead of
specifications like X.509 [7,41]. Browsers need to support a
wide variety of erroneous behaviors, and need to balance se-
curity, usability, standards, and backwards compatibility. In
cases of underspecified behavior, browsers can behave differ-
ently from standard system libraries like OpenSSL, GnuTLS,
and SChannel. In some cases, browsers intentionally deviate
from the specification for backwards compatibility.

In this section, we go into the details of how the Network
Security Services (NSS) [36] library, used by Firefox (and
Chrome on Linux), validates a certificate. We also discuss
the subtleties of reproducing this behavior for our analysis.
For ease of exposition, we break down certificate validation
into three separate steps: chain building (Section 4.1), chain
validation (Section 4.2), and name validation (Section 4.3).
In reality, these steps do not execute sequentially and often
intertwine. We end the section with a comparison of the
OpenSSL library (used in previous work) and NSS (the
library we rely on).

4.1 Chain building
After receiving a certificate from the web server, the brow-

ser needs to generate an appropriate permutation of cer-
tificates that chains up to a trusted certificate. The set
of trusted certificates in the root store changes over time,
and our measurement infrastructure needs to ensure that it
uses the correct root store based on the timestamp of the
connection.

Ideally, the web server correctly presents the whole chain,
including any intermediates, in the reply sent to the browser.
In practice, this is often not the case: servers may only send
the end-host certificate, not include any chain, present an
incomplete chain, include additional unneeded certificates,
contain duplicate certificates, or have the wrong order.

To the best of our knowledge, all major browsers cache
a valid intermediate certificate seen in a connection, and
reuse it to validate connections in the future. Browsers try
to build a valid certificate chain using the information the
server sent as well as any other intermediate certificates in
cache. Such caching implies that the browser’s ability to
validate a specific certificate depends on the current state
of its certificate store. A user visiting a website which does
not supply all necessary certificates will see a warning if the
browser has not seen the missing intermediate in the past.

This is a widespread problem. In our data, 8.13% of the
valid chains exhibited this behavior. Instead of including
the required intermediate as part of the certificate chain,
websites can include a URI in the AIA field that points to the
intermediate. Browsers either reuse existing intermediates, or
download them from the URI listed. Unfortunately, Firefox
lacks AIA support, and Chrome offers preliminary support.4

Internet Explorer supports the AIA extension, and Microsoft
properties commonly rely on it.

Chain building can also face the opposite problem: ex-
tra certificates give the library multiple paths to choose.
Browsers differ in their behavior for such a scenario. Firefox
chooses one path, and raises a warning if the chosen path
does not work. While trying to follow a single path to its end,

4For example, Chrome does not use HTTP proxy settings
for AIA fetches.



Firefox can get stuck in a loop [30]. Chrome tries multiple
paths, and uses any path that succeeds.5

4.2 Chain Validation
At the end of chain building, the browser has found a

permutation of certificates, starting from that of the website
and ending at a trusted certificate in the root store. The
browser then proceeds to check this chain for expiration,
revocation, and name/length constraints.

Expiration. Certificates are valid for fixed periods. The
Not Before and Not After fields of the certificate encode this
information. For each certificate in the chain, the browser
verifies that the current date falls in between the period
defined in the certificate. Since we run our analysis offline
after the connection took place, it is critical that we use the
appropriate time when validating a certificate chain.

Revocation. Malicious actors can steal private keys, or
exploit vulnerabilities in certificate issuance systems to get
certificates for DNS labels that they do not control. Worse,
attackers can also issue themselves an intermediate certifi-
cate, allowing them to MITM arbitrary traffic. Certificate
revocation lists (CRLs) [7] and the OCSP service [41] provide
a mechanism to check the validity of an intermediate or leaf
certificate. The browser needs to check every certificate in
the chain for revocation. For extreme cases, like the recent
DigiNotar incident [24], browsers hardcode a list of untrusted
certificates [35]. A notable exception here applies to Chrome,
which relies on its own distribution mechanism for certificate
revocation information [21] and does not make any CRL or
OCSP requests.

Name and Path Length Constraints. Certificate
Authorities can place usage limits on the intermediate certifi-
cates they issue. The path length constraint limits the num-
ber of intermediate certificates below the issued certificate.
A number of zero means that an intermediate cannot issue
any intermediate certificates. Similarly, name constraints can
limit the intermediate to only issue certificates for certain
sub-domains. For example, an intermediate constrained to
*.example.com cannot issue certificates for *.bank.com. All
modern browsers support name and path constraints, but
since authorities rarely employ it, browser support remains
relatively untested.

4.3 Name Validation
After a browser has built a certificate chain it deems valid,

it checks that the hostname the user tried to connect to
matches a name in the certificate. Note that this is the
only defense against MITM attacks, and as such represents
a critical step of the certificate validation process. An at-
tacker can always get a perfectly valid chain for his own
attacker.com domain, and present it when the user tries
to connect to bank.com. Only the name verification check
prevents a successful man-in-the-middle attack.

The Common Name (CN) field in the certificate subject
contains the domain name(s) for which it is valid. For ease
of administration, common names can contain wildcards to
cover all sub-domains (e.g., a certificate for *.paypal.com).

NSS’ name validation function restricts the occurrence
of asterisks in the certificate subject to the initial part of
a domain name. Further, the asterisk only matches one

5A flag in NSS allows the choice of either Chrome or Firefox
behavior.

level of names. For example, *.example.com cannot match
one.two.example.com.

The Subject Alternative Name (SAN) field enables a cer-
tificate to include a list of names, instead of just one. This
allows an owner of multiple domains to share the TLS infras-
tructure. For example, YouTube serves a certificate valid for
(amongst others) *.google.com as well as *.youtube.com.
In our data, we have certificates listing up to 545 different
names in this field.

RFC 2818 [39] and RFC 6125 [40] describe how HTTP uses
TLS and specifies that clients should only consider the last
(most specific) common name field in a certificate subject. It
also requires clients to ignore the common names if the SAN
extension is present.

4.4 NSS vs. OpenSSL
A novelty of our work concerns the use of TLS libraries to

emulate browser behavior. Specifically, we opt to use NSS
instead of OpenSSL to validate certificate chains. While
OpenSSL serves as an all-purpose low-level cryptography
library for easy and deep access to cryptographic routines,
NSS provides a higher level TLS abstraction in the browser
context. Firefox and Google Chrome rely on the NSS libraries
for SSL/TLS.

For example, the chain-building algorithm of OpenSSL is
strict and can reject chains with superfluous certificates. In
contrast, NSS maintains its own database to keep track of
any valid intermediate certificates encountered in the past,
self-signed site certificates added by the user, and cases where
a user permanently overrides a security error. In addition,
NSS contains a hard-coded list of root certificates. During
certificate validation, NSS tries to use all available certificates
to build a valid chain. NSS’ chain resolution algorithm is
lenient and can accept chains rejected by OpenSSL.

This divergence resembles the divergence in HTML parsing
in browsers and parsing libraries. For backwards compatibil-
ity and usability reasons, browsers need to be more forgiving
of HTML syntax than most libraries. Similarly, the NSS li-
brary needs to be more forgiving than a library like OpenSSL.

The difference in chain validation directly affects the results
of any measurement study. Using NSS, we were able to
validate 95.97% of all the different chains we saw. In contrast,
OpenSSL was only able to validate 88.16% of the unmodified
chains.

Furthermore, OpenSSL does not offer any built-in func-
tionality to check if a certificate validates for a given host-
name. Checking the hostname against the certificate is the
only defense against MITM attacks. Previous work either
skipped name validation [18] or wrote a custom validation
function [46]. Validating a host name to a certificate is non-
trivial. Recently, Georgiev et al. found a number of critical
vulnerabilities in certificate validation due to developers hav-
ing to implement their own code for host name validation,
instead of relying on the library [15]. Fahl et al. presented
similar findings in Android applications [13].

5. METHODOLOGY
Having discussed the modus operandi of browser validation,

we now study the prevalence of TLS errors on the web.
We briefly explain our passive monitoring infrastructure in
Section 5.1 and refer to Amann et al. for further details [2].
Section 5.2 presents a categorization of the errors we study.
Finally, we present and discuss our results in Section 6.



5.1 Measurement Infrastructure
The ICSI networking group collects TLS/SSL session and

certificate information from ten research, university, and gov-
ernment networks. These networks represent a user base of
about 300,000 users. This data collection began in early 2012
and the number of contributing sites has steadily increased.
Overarching goals of this data collection effort include en-
abling empirical research of the TLS ecosystem as well as
helping to understand its evolution and design. Amann et
al. provide a full introduction to the data collection infras-
tructure [2].

Infrastructure. Each of our data providers operate an
internal network from which TLS connections originate to the
Internet. As the traffic crosses the network border, the Bro
network monitor [37] inspects the traffic for policy violations
and intrusions.

Bro’s dynamic protocol detection identifies SSL/TLS traffic
independent of the transport-layer port [9]. At each site, we
provide the operators with a script that, for each TLS/SSL
connection, logs the SNI extension header value (if available),
the complete server certificate chain, and the timestamp of
the connection. Due to privacy concerns, our script does not
record any information that identifies a client system directly.
Every hour, the script uploads the ASCII-formatted log-files
to a storage machine at ICSI. Some sites process nearly two
million SSL/TLS connections at peak hours.

Data. Our data covers a period of nine months, ranging
from February to November 2012. We successfully captured
a total of 11.5 billion SSL connections on all ports. Of
these, 10.2 billion connections connect to port 443 (the de-
fault HTTPS port). We further filter these connections by
removing connections due to grid computing, connections
that resumed a previous session and did not exchange any
certificate, and connections that did not have the SNI field
set. This leaves us with 3.9 billion connections that exchange
at least one certificate and exhibit a SNI value. The total
number of distinct SNIs in our final data is 9.8 million. The
total number of distinct certificates is 496,742.

Reproducing Browser Validation Logic. Using NSS
outside the browser context poses a number of challenges.
Because the developers of NSS geared the library towards
browsers, it lacks convenient APIs for standalone usage. NSS
does not come with extensive documentation and example
code; requiring aspiring users to dig deep into the code
base. Furthermore, NSS is aimed at browsers and lacks
some of the functionality needed for large-scale analysis. We
developed wrapper libraries to facilitate certificate validation
with NSS, OpenSSL (for comparison), as well as a NSS patch
which allows verification of large numbers of certificate chains.
Our code is freely available online under an open source
license [1]. We used NSS 3.13.6 with the aforementioned
patch to generate all numbers.

5.2 Categorizing TLS Errors in Browsers
In this study, we focus on a subset of errors that cause an

overridable warning to appear, i.e., a warning that allows
users to continue despite a TLS error. In Firefox, users can
only override errors related to certificate validation. Similar
to the structure in Section 4, we classify these errors based
on where they occur, namely, during chain building, chain
validation, and name validation.

Recall that the three phases discussed above are only for
exposition, and do not correspond to any modularization in

Load 
Certificate

Root & 
Interm. 

CA Store

is_root?

Firefox validation 
function

NSS error? Expired Cert or
Expired Issuer

Untrusted or 
Unknown Issuer

NSS 
name matching

Expired 
Certificate

matches?

Unknown
Issuer

Non-overridable 
Error

Valid Certificate

Certificate for 
wrong domain

Yes

No

Yes

No

Yes

Yes

NoNo

Yes
No

SNI

Begin Validation

Selfsigned 
Certificate

Figure 1: Certificate validation error flowchart. The root and
intermediate store contains all the valid intermediates in our full
dataset.

the NSS code. As a result, our classification of errors also does
not directly correspond to NSS error codes. Figure 1 presents
the algorithm we use for translating the NSS responses into
our categorization. We expand on this further below.

5.2.1 Chain Building Errors
An error during chain building occurs if the browser cannot

find a permutation of certificates that links a certificate for
the website to a trusted root.

1a. Unknown Issuer. This error occurs when the browser
is unable to create a chain from the server certificate to a
trusted certificate authority. This typically happens when
the server certificate issuer is neither present in the NSS
root store, nor is it one of the valid intermediates we saw
throughout our experiment.

1b. Self-signed Certificate. A self-signed certificate
is a certificate with an unknown issuer whose subject and
issuer are the same. We created a separate category for
this error due to its prevalence. Personal use devices, such
as routers, music players, and disk drives, commonly use
self-signed certificates. We use the NSS is_root flag to
classify certificates as self-signed. This is the same flag used
by the Firefox browser to identify self-signed certificates for
its warning page.

1c. Incomplete Chain. In its response, a website can
either include all the intermediates it needs to chain back
to a trusted root, or include an AIA field pointing to the
requisite intermediate certificates, or just hope that the miss-
ing intermediates are present in the user’s cache. Among



the major browsers, only Firefox does not support the AIA
extension and may fail to build a working chain in the ab-
sence of a needed intermediate certificate. Measuring the
prevalence of this error is subtle since Firefox caches all valid
intermediates it has seen in the past, even across browser
restarts. We bound this error by testing all unique chains
with caching turned on and caching turned off. The exact
number of errors experienced by each user depends on the
individual user’s browsing history. Since our data does not
allow us to identify individual users, exact measurement is
impossible.

5.2.2 Chain Validation Errors
These errors map directly to the individual phases dis-

cussed in Section 4.2.
2a. Expired Certificates. Recall that a certificate is only

valid for a specific period. If a server sends a certificate that
is no longer valid, but was valid in the past, NSS classifies
it as an expired certificate. While most servers renew their
certificates before they expire, we also find several that fail
to renew before the expiration date.

2b. Revoked Certificates. In addition to security rea-
sons, CAs use revocation for administrative reasons. Chrome
maintains its own revocation list, free of revocations caused
by administrative reasons [21]. In contrast, Firefox and Inter-
net Explorer check CRLs and use OCSP requests to check the
status of certificates. Our measurements allow us to bound
the impact of revocation, and individual design decisions
(e.g., Chrome’s decision) on user visible warnings.

5.2.3 Name Validation Errors
A name validation error occurs when a name is not found in

the certificate matching the domain that the user connected
to. Figure 2 illustrates our classification algorithm that
further breaks down a name validation error into the sub-
categories we explain below. We focus on possible changes
in the browser name validation logic that could ameliorate
these errors.

3a. WWW Mismatches. A certificate for bank.com

does not work for www.bank.com and vice versa. In the
past, browser developers turned down requests to change
this behavior [29]. Our study helps empirically measure the
impact of this decision. Note that we reuse the NSS name
validation function, and do not write our own validation
function for this category.

3b. Relaxed Matching. Recall from Section 4.3 that an
asterisk in a name can only match one level of names in the
initial part of the DNS label. A more permissive function
that matches asterisks to an arbitrary number of sub-domains
(while still ensuring that it is the same TLD+1) could accept
more certificates and reduce the number of warnings shown
to users. We measured this via our own implementation of
such a relaxed matching algorithm, which is available online
as part of our code release [1].

3c. Registered Domain Match. If a user connecting to
sub.example.com receives a certificate for example.com, it is
arguably a lower threat than an invalid certificate chain. Note
that browsers already do not fully isolate sub-domains; e.g.,
the cookie policy does not isolate sub-domains. Arguably, a
name validation error in which the SNI and the presented
certificate share the registered domain is lower risk than if
the presented certificate is for a totally different domain.

Identifying the registered domain in a given DNS label is
tricky: each top-level domain (e.g., .in) has its own policy
on the suffixes under which users can directly register names.
For example, the registered domain for test.example.in is
example.in, but it is not gov.in for example.gov.in. This
is because .in allows registrations under both the .in as well
as .gov.in suffixes. We use the Mozilla maintained public
suffix list to identify the registered domains for a given DNS
label [38].

3d. Multiple Names in certificate. As required by
the standard [39], Firefox ignores multiple common names
in a certificate and chooses the last common name in the
certificate. Firefox also ignores the common name field if
the subject alternative name field is present. We measure
the impact of this behavior by manually extracting all the
names in a certificate and, for each, directly calling the name
validation function used by Firefox.

In addition to the errors discussed above, a number of
other errors, which we seldom encounter, are not overridable
by user. Examples for these errors are invalid encoded cer-
tificates, name constraint errors, or path length errors. Since
we focus only on user-overridable errors, we ignore them.

5.3 Limitations
We assume that the network monitor does not encounter

man-in-the-middle attacks. Practically, this means that an
active network attacker near the web server can affect our
measurements. We deem this a reasonable assumption since
CAs already make a similar assumption while issuing DV
certificates.

We collect data from a large number of academic and
research institutions, representing nearly 300,000 users. The
data collected may not represent the global TLS ecosystem.
As part of our agreement, the data we collect cannot identify
individual users. Thus, our data may over-represent a single
user or a group of users.

We only look at connections using the SNI extension. All
modern browsers send the SNI extension. 38% of connections
in our data do not use the SNI extension. The warnings for
this fraction could diverge from rest of the connections.

As we noted in Section 5.2.1, due to the caching of inter-
mediates, we can only bound the errors in chain building.
Similarly, Firefox allows users to cache certificate error over-
rides and to import additional root CAs. Thus, our error
measurement may not represent the warnings shown to users.

Our model assumes that top-level warnings and mixed-
content warnings consume the same user attention budget.
If users separate these two warnings, our numbers might not
apply directly. Unfortunately, the network monitor cannot
easily distinguish top-level loads from secondary loads. Fur-
ther, mixed content warnings also occur due to including
HTTP content in a HTTPS page. Our measurements do
not measure the impact of these errors on the user attention
budget.

6. RESULTS AND DISCUSSION
98.46% of the filtered connections validate correctly, im-

plying a false warning rate of 1.54%. The massive difference
in the base-rates of hijacked connections versus connections
that occur in benign scenarios makes the 1.54% error rate
crushing. For example, consider what happens if an attack
occurs only once in a million connection attempts. A 1.54%
false warning rate means that the million connections cause



Matches when 
adding or removing 

'www' from sni?

Mark as
www mismatch 

(3a)

Other CNs in 
Subject

Matches with NSS 
name matching?

Mark as matching 
with multiple 
names (3d)

Matches with 
relaxed algo?

Mark as matching 
with relaxed algo. 

(3b)

SNI, Certificate

Matches with 
relaxed and add or 

remove www?

Mark as matching 
with relaxed algo + 

www (3a + 3d)

Matches with 
registered domain 

matching?

Mark as registered 
domain match (3c)

SNI, list of TLDs

NoNo No No

Yes YesYes Yes Yes

No

Input

Output

Figure 2: Name validation error decision tree. Note the edges going from each output back to a decision node: each certificate can end up
in multiple outputs.

Error Connections Certificates

1a. Unknown Issuer 70.51% 5,027
1b. Self Signed Certificates 2.99% 6,126
2a. Expired Certificates 7.65% 21,522
3. Name Validation Error 18.82% 12,146

Table 1: Break up of benign errors into categories. The connection
column indicates percentage of all erroneous connections.

15,401 warnings, out of which 15,400 are false warnings. It
is not surprising that humans train themselves to ignore
the warnings, thus clicking through the one true warning.
Reducing the false warnings rate is critical to improving TLS
security.

In this section, we discuss our results in full details based
on the error categorization we presented in Section 5.2. For
each error category, we measure the number of connections
we see the error for. Users access some erroneous services
an overwhelming number of times. To reduce the impact
of such services, we also measure the number of certificates
we see for each error category. Note that a single certificate
corresponds to multiple connections, and thus can fall into
multiple categories.

We structure the discussion into three parts: first, we dis-
cuss errors caused by server misconfigurations/errors. This
includes chain validation errors (Section 6.1) and name val-
idation errors (Section 6.2). Another class of errors occurs
due to browser design decisions, such as AIA and revoca-
tion support. We measure and discuss the impact of these
decisions in Section 6.3.

Based on our analysis, we also make concrete recommen-
dations for reducing warning fatigue. Our recommendations
center around three approaches: warning design to help focus
user attention on high-risk events, browser modifications to
conserve user attention, and technical innovations to ease
TLS deployment and reduce errors.

6.1 Chain Validation Errors
Results. Table 1 breaks up the benign errors we see into

the categories defined in Section 5.2. The first column lists
the number of errors as a percentage of total connection
errors, and the second column lists the number of certificates
that manifest the particular error. Note that a particular
certificate can occur multiple times in the second column: e.g.,
the same certificate can raise a name validation error in one

connection and an expired certificate error in another. Below,
we analyze these results and provide recommendations.

Unknown Issuer and Self-Signed Certificates. The
overwhelming majority (73.50%) of erroneous connections
involve unknown issuers or self-signed certificates. This
indicates that a large number of websites opted out of the
CA infrastructure. Unfortunately, an unknown issuer also
represents a high-risk scenario. Reducing the severity of the
warnings in such cases is infeasible. Instead, we emphasize
technical measures to reduce the prevalence of such warnings
in benign scenarios.

One of the reasons administrators opt-out of the CA in-
frastructure is the perceived cost of buying a valid certificate
from a trusted authority. Recently, StartCom, a certificate
authority trusted by all modern browsers, started offering
free TLS certificates for simple use-cases [26].

Recommendation 1: We urge the community to advo-
cate the use of free TLS certificates via authorities like
StartCom [26]. Such advocacy, or evangelism, previ-
ously saw success in pushing for web standards as well
as the ongoing push for mobile web standards [27,34].
Anecdotal evidence suggests low awareness of these free
certificates.

In some scenarios, the current CA infrastructure does not
offer the flexibility needed. For example, a router manufac-
turer does not know the DNS label that the router will map
to, and thus cannot get a certificate in advance.

Recommendation 2: We also suggest increasing the mo-
mentum on new standards like DNS-based Authenti-
cation of Named Entities (DANE) [17], which commu-
nicates public keys via DNSSEC. This allows the site
or device in question to declare its public-key without
relying on any issuer.

Our measurements also indicate the powerful usability
advantages of network-view based approaches such as Con-
vergence [6]. These systems can massively reduce the number
of false warnings, and thus make actual attacks stand out.
Unfortunately, these solutions involve contacting a “notary”
server when connecting to a domain. This is a notable pri-
vacy and performance issue. Recent research aims to achieve
Convergence-like guarantees in a privacy preserving and high
performance manner [2], but further research is needed.



Error Connections Certificates

WWW Mismatches 1.17% 7.92%
Multiple Names 1.21% 0.03%
Relaxed Match 50.40% 7.24%
Relaxed with WWW 51.54% 13.87%
TLD Match 56.93% 29.73%

Table 2: Break up of name validation errors into sub-categories,
as a percentage of total name validation errors.

Expired Certificates. As Table 1 demonstrates, expired
certificates are the most common form of erroneous certifi-
cates (Column 2 Table 1). We examined the number of
connections accessing an expired certificate and found that
the median is four accesses, and the third quartile lies at
twelve accesses. This indicates that expired certificate errors
do not occur in popular services, but are common in the long
tail.

To better understand the access patterns of expired cer-
tificates, we examined all certificates that occur in at least
one connection with a timestamp larger than the Not After

value. We then computed ∆, the difference of the connec-
tion timestamp to the certificate’s expiration date. Since
multiple connections may retrieve the same certificate, we
see more than one ∆ per certificate, and thus summarize all
connections accessing the same certificate with the minimum,
maximum, and median of the ∆ values for each certificate.

For the minimum/median/maximum estimators, the first
quartile lies at 2.8/5.2/6.8 days and the median at 35.8/52.8/64.7
days. In other words, 25% of all expired certificates are ac-
cessed only for a week after their expiry. This suggests that
25% of domains causing an expired certificate error renew
their certificate within a week of expiry.

From a cryptographic standpoint, an expired certificate is
no weaker than a valid one. Using expired certificates does
not affect confidentiality and integrity of the communication,
and raising a warning adversely affects the user attention
budget.

This raises the question: why not accept all expired certifi-
cates, regardless of the expiration time? Domain ownership
on the web is not constant. Ignoring expiration dates can
allow past owners to serve visitors using an old certificate.
We make the following recommendation:

Recommendation 3: Accept certificates that expired
in the last week without an interstitial warning. Rely
on an info-bar instead. Since expired certificates are
low-risk, consuming user attention for such a scenario is
not compelling. Instead, an info-bar, informing the user
that the website will stop working in a week can warn
the website administrator, without tiring out users.

The attack discussed above can also occur for one week
in our proposal. We believe that the need to conserve user
attention trumps the low risk of such an attack.

6.2 Name Validation Errors
Results. Table 2 breaks down the name validation errors

into the sub-categories we defined in Section 5.2.3. The
numbers denote the percentage of all name validation errors:
e.g., 1.17% (7.92%) of all connections (certificates) with name
validation errors involved a WWW mismatch. Unlike the
previous table, a given connections can occur in more than
one category. Below, we discuss the results further.

As seen in Table 1, name validation errors form the second
most common category of errors. Note that these errors
occur even in newer systems like Convergence. We find that
Firefox’s restrictive policy on multiple names has low impact
on user attention. WWW mismatches also have a low impact
in the number of connections, but a much higher impact when
only looking at certificates. We consider name validation
errors caused by WWW mismatches low risk.

Recommendation 4: Tolerate WWW mismatches in
the certificate validation logic. Alternatively, browser
vendors should show a different “low-risk” warning in
such scenarios.

50.40% (7.24%) of connections (certificates) with name
validation errors validate if we switch to matching multiple
levels with a \ast . Accepting www mismatches increases this
number to 51.51% (13.87%). The wide prevalence of such
errors indicates a misunderstanding: website administrators
are not aware of the browser’s limited glob expansion strategy.
In one of the bugs we filed during this work, a NSS developer
also suggested switching to a relaxed matching scheme [32].
While the standard recommends against a relaxed name
validation scheme, it does not prohibit it [40].

Recommendation 5: Use a more relaxed name validation
algorithm that accepts multiple levels for an asterisk.

A significant number of errors occur where the certificate
and the connection targets match in their registered domain.
We consider this a low risk scenario and make the following
recommendation:

Recommendation 6: Modify the warning for sub-domain
mismatches, and help focus user attention on the high-
risk scenarios. For example, the warning shown when
the admin.bank.com server presents a certificate for
www.bank.com should indicate a lower risk than the
warning shown when the bank.com server presents a
certificate for the unrelated attacker.com.

While a full manual analysis of the remaining errors is
difficult, it appears that a large number of errors occur due
to content distribution networks (CDNs) such as Akamai,
EdgeCast, CloudFlare. Popular websites like Facebook rely
on CDNs to serve content. We find a number of connections
with a SNI value of facebook.com but a server certificate for
a CDN such as Akamai. We believe that the reason for the
prevalence of these errors is the difficulty of detecting and
diagnosing such errors.

Consider an image load with an onerror event handler
that logs load failure. The browser’s error event does not
provide any information about the cause of a load error.
Thus, the certificate error at the CDN, likely caused due to
a misconfiguration, is indistinguishable from a missing image
(a 404) or an error in the user’s network connection. We
posit that this makes it difficult for large-scale websites such
as Facebook to detect and diagnose these intermittent TLS
issues with their CDN providers.

Recommendation 7: Browsers should provide the
onerror event with information about the certificate
validation error, if any. This information allows the
website administrator to log and track down any issue.



Error Connections Number

1c. Incomplete Chains 21,449,989 29,661
1c. Incomplete Chains - AIA 1,623,047 450
2b. Revoked Certificates - Chrome 103,472 301
2b. Revoked Certificates - CRLs 3,364,809 1,519

Table 3: Impact of browser design decisions on false warnings.

In the past, Facebook raised a similar concern with brow-
ser handling of script errors, and browser vendors modified
code to accommodate Facebook’s need to diagnose such er-
rors [3]. As TLS achieves wider “always-on” deployment,
easily diagnosing errors will become critical.

6.3 Impact of Browser Design Decisions
Results. Table 3 outlines the results of our measurement

of the impact of AIA, caching, and revocation lists on false
warnings. The first two rows measure the impact of inter-
mediate caching and AIA fetching: 21,449,989 connections
fail with both disabled, 1,623,047 fail with just intermediate
caching disabled. The next two rows measure the impact of
revocation lists used: the third row measures the connections
that fail due to Chrome’s CRL, while the last row measures
the connections that fail with the normal CRLs. We discuss
the results further below.

Incomplete Chains. Recall that incomplete chains can
still verify due to cached certificates. To measure the impact
of caching of intermediate certificates, we disabled caching
and tried to validate all unique chains in our data. This
caused 8.13% of the valid, unique chains (or 29,661 chains)
to fail validation.

The AIA extension allows a server to send an incomplete
chain, but include a URL to fetch the requisite intermediates
from. Among the major browsers, only Firefox does not fetch
intermediates mentioned in this field. To measure the impact
of this decision, we took the 29,661 chains that failed due
to a missing intermediate, and tried to validate them with
AIA fetching enabled. We found that 98.48% of chains that
did not validate with caching disabled successfully validated
with AIA fetching enabled.

Disabling AIA support puts an unnecessary burden on
end user attention budget. Despite being valid, each of the
19,826,942 connections and 29,211 certificates can cause a
TLS warning on a clean cache. Problems with enabling AIA
support include possible privacy implications. Alternative
approaches like preloading the browser with all intermedi-
ate authorities can also achieve similar results, without the
privacy impact [31].

Recommendation 8: Enable AIA support or preload all
known intermediate authorities in the browser cache.

Revoked Certificates. CAs use revocation for admin-
istrative as well as security reasons. While Firefox uses the
CRL as published by CAs, Google Chrome relies on its own
revocation list. Currently, Chrome’s revocation list contains
18,972 certificates. The CRLs for all the intermediate and
root authorities in our database have 917,284 certificates.

As seen in Table 3, we see five times the certificates present
in CRLs compared to certificates present in Chrome’s list.
This difference translates to nearly thirty three times as many
errors.

Recommendation 9: Switch to separate administrative
and security revocation lists, with distinct warnings for
each. Since the number of connections using certificates
in the security revocation list is small, browsers should
consider errors due to the security revocation lists a
hard fail, and not consume the user attention with an
overridable warning.

It is not clear what browser behavior for the administrative
revocations should be. While the CRL format offers a field
to describe the reason for revocation, most authorities do
not use it. In our data, 70.9% of the CRL entries do not
include a reason. Further research into the causes of these
revocations is needed to shed light on this issue.

7. CONCLUSION
Browsers do not consider the dangers of habituation when

showing a warning. This, coupled with the prevalence of false
warnings, reduces the security of the TLS protocol, as users
train themselves to click through warnings. By measuring
the prevalence of different types of false warnings, we provide
a framework for browsers to reevaluate their current warning
mechanisms and conserve user attention. We also presented
a number of concrete recommendations based on our analysis.
We have shared our data and results with browser vendors,
and already received positive and encouraging feedback.

8. ACKNOWLEDGMENTS
We would like to thank Adrienne Porter-Felt, Matthew

Finifter, Michael McCoyd, Kurt Thomas, Paul Pearce, Jeff
Hodges, and Warren He for taking time to read drafts of
this paper. We would also like to thank Brian Smith, Nasko
Oskov, and Adam Langley for taking time to answer our
queries about browser internals.

This research was supported by Intel through the ISTC
for Secure Computing; by the Air Force Office of Scientific
Research under MURI grant numbers 22178970-4170 and
FA9550-08-1-0352; by the National Science Foundation under
grant numbers OCI-1032889, 0831501-CT-L, CCF-0424422,
and 0842695; by a fellowship within the Postdoc-Programme
of the German Academic Exchange Service (DAAD); and
by the Office of Naval Research under MURI Grant Number
N000140911081. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF,
the AFOSR, the ONR, the DAAD, or Intel.

9. REFERENCES
[1] Amann, J. Github repositories. https:

//github.com/0xxon/tls-validation-measurement.

[2] Amann, J., Vallentin, M., Hall, S., and Sommer,
R. Extracting Certificates from Live Traffic: A Near
Real-Time SSL Notary Service. Tech. Rep. TR-12-014,
International Computer Science Institute, Nov. 2012.
http://www.icsi.berkeley.edu/pubs/techreports/

ICSI_TR-12-014.pdf.

[3] Barth, A. X-Script-Origin, we hardly knew ye, Oct
2011. http://www.schemehostport.com/2011/10/
x-script-origin-we-hardly-knew-ye.html.

[4] Böhme, R., and Grossklags, J. The Security Cost of
Cheap User Interaction. In Proceedings of the 2011 New
Security Paradigms Workshop (2011), ACM, pp. 67–82.

https://github.com/0xxon/tls-validation-measurement
https://github.com/0xxon/tls-validation-measurement
http://www.icsi.berkeley.edu/pubs/techreports/ICSI_TR-12-014.pdf
http://www.icsi.berkeley.edu/pubs/techreports/ICSI_TR-12-014.pdf
http://www.schemehostport.com/2011/10/x-script-origin-we-hardly-knew-ye.html
http://www.schemehostport.com/2011/10/x-script-origin-we-hardly-knew-ye.html


[5] Chromium Authors. HSTS Preload and Certificate
Pinning List. https:
//src.chromium.org/viewvc/chrome/trunk/src/net/

base/transport_security_state_static.json.

[6] Convergence. http://www.convergence.io.

[7] Cooper, D., Santesson, S., Farrell, S., Boeyen,
S., Housley, R., and Polk, W. Internet X.509
Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. RFC 5280 (Proposed
Standard), May 2008.

[8] Dhamija, R., Tygar, J., and Hearst, M. Why
Phishing Works. In Proceedings of the SIGCHI
conference on Human Factors in computing systems
(2006), ACM, pp. 581–590.

[9] Dreger, H., Feldmann, A., Mai, M., Paxson, V.,
and Sommer, R. Dynamic Application-Layer Protocol
Analysis for Network Intrusion Detection. In USENIX
Security Symposium (2006).

[10] Eastlake, D. Transport Layer Security (TLS)
Extensions: Extension Definitions. RFC 6066
(Proposed Standard), Jan. 2011.

[11] Egelman, S., Cranor, L. F., and Hong, J. You’ve
Been Warned: An Empirical Study of the Effectiveness
of Web Browser Phishing Warnings. In Proceedings of
The 26th SIGCHI Conference on Human Factors in
Computing Systems (CHI) (2008).

[12] Electronic Frontier Foundation. The EFF SSL
Observatory. https://www.eff.org/observatory.

[13] Fahl, S., Harbach, M., Muders, T., Smith, M.,
Baumgärtner, L., and Freisleben, B. Why Eve
and Mallory Love Android: An Analysis of Android
SSL (In)security. In Proceedings of the 2012 ACM
conference on Computer and communications security
(New York, NY, USA, 2012), CCS ’12, ACM, pp. 50–61.

[14] Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin,
E., and Wagner, D. Android permissions: User
attention, comprehension, and behavior. In Proceedings
of the Symposium on Usable Privacy and Security
(SOUPS) (2012).

[15] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R.,
Boneh, D., and Shmatikov, V. The most dangerous
code in the world: validating SSL certificates in
non-browser software. In ACM Conference on
Computer and Communications Security (2012),
pp. 38–49.

[16] Hodges, J., Jackson, C., and Barth, A. Http strict
transport security (hsts). Internet Engineering Task
Force (IETF) RFC draft (2011).

[17] Hoffman, P., and Schlyter, J. The DNS-Based
Authentication of Named Entities (DANE): TLSA
Protocol. RFC 6698, Aug. 2012.

[18] Holz, R., Braun, L., Kammenhuber, N., and
Carle, G. The SSL landscape: a thorough analysis of
the x.509 PKI using active and passive measurements.
In Proc. 2011 ACM SIGCOMM conference on Internet
measurement conference (2011).

[19] Karlof, C., Tygar, J., and Wagner, D.
Conditioned-safe Ceremonies and a User Study of an
Application to Web Authentication. In Sixteenth
Annual Network and Distributed Systems Security
Symposium (NDSS 2009) (February 2009).

[20] Krosnick, J. Response strategies for coping with the
cognitive demands of attitude measures in surveys.
Applied cognitive psychology 5, 3 (1991), 213–236.

[21] Langley, A. Revocation checking and Chrome’s CRL.
http://www.imperialviolet.org/2012/02/05/

crlsets.html, Feb. 2012.

[22] Langley, A. SSL Interstitial Bypass Rates, February
2012. http://www.imperialviolet.org/2012/07/20/
sslbypassrates.html.

[23] Laurie, B., Langley, A., and Kasper, E.
Certificate Authority Transparency and Auditability.
https://tools.ietf.org/html/

draft-laurie-pki-sunlight-02.

[24] Leavitt, N. Internet security under attack: The
undermining of digital certificates. Computer 44, 12
(2011), 17–20.

[25] Lenstra, A., Hughes, J., Augier, M., Bos, J.,
Kleinjung, T., and Wachter, C. Ron was wrong,
Whit is right. IACR eprint archive 64 (2012).

[26] Ltd., S. StartSSL Free Certificate.
https://www.startssl.com/?app=1.

[27] MozillaWiki: Mobile Web Evangelism.
https://wiki.mozilla.org/Mobile/Evangelism.

[28] Motiee, S., Hawkey, K., and Beznosov, K. Do
Windows Users Follow the Principle of Least Privilege?
Investigating User Account Control Practices. In
Proceedings of the Symposium on Usable Privacy and
Security (SOUPS) (2010).

[29] Mozilla Bugzilla. Bug 364667: Tolerate mismatch
between certificate host and actual host if the
difference is only “www.”. https://bugzil.la/364667.

[30] Mozilla Bugzilla. Bug 634074: Cannot validate
valid certificate chain when looping/cross-signed certs
are involved. https://bugzil.la/634074.

[31] Mozilla Bugzilla. Bug 657228 – Preload all known
intermediate certificates for CAs in our root store.
https://bugzil.la/657228.

[32] Mozilla Bugzilla. Bug 806281: NSS doesn’t use
publicsuffix list. https://bugzil.la/806281.

[33] Mozilla Bugzilla. Bug 808331: Intermediates
Cached in Private Browsing Mode.
https://bugzil.la/808331.

[34] Mozilla Bugzilla. Tech Evangelism Bugs.
http://is.gd/sqCtFm.

[35] MozillaWiki: Maintaining Confidence in Root
Certificates. https://wiki.mozilla.org/CA:
MaintenanceAndEnforcement#Actively_

Distrusting_a_Certificate.

[36] Network Security Services (NSS). https:
//www.mozilla.org/projects/security/pki/nss/.

[37] Paxson, V. Bro: A System for Detecting Network
Intruders in Real-Time. Computer Networks 31, 23-24
(1999), 2435–2463.

[38] Public Suffix List. http://publicsuffix.org.

[39] Rescorla, E. HTTP Over TLS. RFC 2818
(Informational), May 2000.

[40] Saint-Andre, P., and Hodges, J. Representation
and Verification of Domain-Based Application Service
Identity within Internet Public Key Infrastructure
Using X.509 (PKIX) Certificates in the Context of
Transport Layer Security. RFC 6125, March 2011.

https://src.chromium.org/viewvc/chrome/trunk/src/net/base/transport_security_state_static.json
https://src.chromium.org/viewvc/chrome/trunk/src/net/base/transport_security_state_static.json
https://src.chromium.org/viewvc/chrome/trunk/src/net/base/transport_security_state_static.json
http://www.convergence.io
https://www.eff.org/observatory
http://www.imperialviolet.org/2012/02/05/crlsets.html
http://www.imperialviolet.org/2012/02/05/crlsets.html
http://www.imperialviolet.org/2012/07/20/sslbypassrates.html
http://www.imperialviolet.org/2012/07/20/sslbypassrates.html
https://tools.ietf.org/html/draft-laurie-pki-sunlight-02
https://tools.ietf.org/html/draft-laurie-pki-sunlight-02
https://www.startssl.com/?app=1
https://wiki.mozilla.org/Mobile/Evangelism
https://bugzil.la/364667
https://bugzil.la/634074
https://bugzil.la/657228
https://bugzil.la/806281
https://bugzil.la/808331
http://is.gd/sqCtFm
https://wiki.mozilla.org/CA:MaintenanceAndEnforcement#Actively_Distrusting_a_Certificate
https://wiki.mozilla.org/CA:MaintenanceAndEnforcement#Actively_Distrusting_a_Certificate
https://wiki.mozilla.org/CA:MaintenanceAndEnforcement#Actively_Distrusting_a_Certificate
https://www.mozilla.org/projects/security/pki/nss/
https://www.mozilla.org/projects/security/pki/nss/
http://publicsuffix.org


[41] Santesson, S., and Hallam-Baker, P. Online
Certificate Status Protocol Algorithm Agility. RFC
6277 (Proposed Standard), June 2011.
http://www.ietf.org/rfc/rfc6277.txt.

[42] Soghoian, C., and Stamm, S. Certified lies:
Detecting and defeating government interception
attacks against ssl (short paper). Financial
Cryptography and Data Security (2012), 250–259.

[43] Sotirakopoulos, A., Hawkey, K., and Beznosov,
K. On the challenges in usable security lab studies:
lessons learned from replicating a study on SSL
warnings. In Proceedings of the Seventh Symposium on
Usable Privacy and Security (New York, NY, USA,
2011), SOUPS ’11, ACM, pp. 3:1–3:18.

[44] Sunshine, J., Egelman, S., Almuhimedi, H., Atri,
N., and Cranor, L. F. Crying Wolf: An Empirical
Study of SSL Warning Effectiveness. In Proceedings of
the 18th Usenix Security Symposium (2009).

[45] The Electronic Frontier Foundation. The
Sovereign Keys Project.
https://www.eff.org/sovereign-keys.

[46] Vratonjic, N., Freudiger, J., Bindschaedler, V.,
and Hubaux, J. The inconvenient truth about web
certificates. Workshop on Economics of Information
Security and Privacy (2011), 79–117.

[47] Wendlandt, D., Andersen, D. G., and Perrig, A.
Perspectives: Improving SSH-style Host Authentication
with Multi-Path Probing. In USENIX Annual
Technical Conference (2008).

[48] Whalen, T., and Inkpen, K. Gathering evidence:
use of visual security cues in web browsers. In
Proceedings of Graphics Interface 2005 (2005),
Canadian Human-Computer Communications Society,
pp. 137–144.

[49] Wikipedia. Accuracy of Ranking by Alexa Toolbar,
2012.
https://en.wikipedia.org/wiki/Alexa_Internet#

Accuracy_of_ranking_by_the_Alexa_Toolbar.

https://www.eff.org/sovereign-keys
https://en.wikipedia.org/wiki/Alexa_Internet#Accuracy_of_ranking_by_the_Alexa_Toolbar
https://en.wikipedia.org/wiki/Alexa_Internet#Accuracy_of_ranking_by_the_Alexa_Toolbar

	Introduction
	Related Work
	Background
	The TLS Ecosystem
	Certification Authorities
	Web Servers
	Browsers

	TLS Warnings

	Browser Validation Behavior
	Chain building
	Chain Validation
	Name Validation
	NSS vs. OpenSSL

	Methodology
	Measurement Infrastructure
	Categorizing TLS Errors in Browsers
	Chain Building Errors
	Chain Validation Errors
	Name Validation Errors

	Limitations

	Results and Discussion
	Chain Validation Errors
	Name Validation Errors
	Impact of Browser Design Decisions

	Conclusion
	Acknowledgments
	References

