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ABSTRACT
Commercial as well as scientific networks have increased
tremendously in speed over the last years. However, in to-
day’s world, such fast networks also expose sites to incessant
network attacks like theft of information, parasitic resource
consumption, or suffering from (or participating in) denial-of-
service (DOS) attacks. Some of the most powerful networks
today remain particularly hard to defend: the 100G environ-
ments and backbones that facilitate modern data-intensive
sciences (physics, medicine, climate research, etc.) prove very
sensitive to the slightest disturbances. We offer a security
solution for these environments, which cannot use turn-key
classical solutions like firewalls or intrusion detection systems,
as they cannot operate reliably at the necessary speeds. We
present the design of a novel, comprehensive framework that
aims to integrate software and hardware to enable economical
protection of critical high-performance networks. We also
argue for taking a more holistic viewpoint of the capabili-
ties and problems that can be solved by software defined
networks.

1. INTRODUCTION
Network intrusion detection systems like Bro [7], Suri-

cata [34], and Snort [28] are essential tools for securing net-
works against an incessant flood of attacks from the Internet.
However, with the enormous bandwidths available today in
commercial and, especially, scientific networks, network mon-
itoring is struggling to keep up. This is particularly true for
the 100G environments and backbones that facilitate mod-
ern data-intensive sciences—physics, astronomy, medicine,
climate research, etc. For such high-speed networks, clas-
sic inline security solutions, such as firewalls and intrusion
prevention systems, remain infeasible options, as they can-
not operate reliably at the necessary speeds [14]. Advanced
network architectures, like ESnet’s Science DMZ [10], thus
advocate passive monitoring solutions.

With increasing network loads, today such passive systems
traditionally have to resort to load distribution across more
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and more CPUs, and potentially machines [35]; sometimes
in combination with instructing network hardware to stop
forwarding high-traffic flows altogether (shunting ; [15, 37, 3,
33]). Recently, however, the rise of programmable networking
hardware has opened up the opportunity to develop novel
protection mechanisms that offer increased capacity, with
much less resources, by tailoring hardware support specif-
ically to the security domain. While in the past such an
approach would have been prohibitively expensive, switches
and NICs are now available at reasonable price points that
are either directly programmable—for example in P4 [4], or
POF [32]—or for which at least the underlying platform of-
fers the vendor the flexibility to add new capabilities without
much effort (e.g., RMT [5], XPliant [9], and FlexPipe [17]).

In this work, we present the design of a comprehensive
framework integrating software and hardware to facilitate
economical protection of high-speed networks—more effec-
tively and at lower cost than solutions that are available
today. At a more fundamental level, our effort showcases
how a specific application domain can benefit from the capa-
bilities that today’s hardware offers through careful design
of appropriate APIs and feature sets for devices to support.
We argue that, from such a more holistic perspective, soft-
ware defined networking does not need to remain limited to
just the small set of basic use-cases that today’s OpenFlow
happens to support. It instead offers the potential to enable
a wealth of new powerful applications, even if they exhibit
quite specific needs.

For the security domain, we identify four areas in which net-
work hardware can significantly lower the load that is placed
on network monitoring systems: (i) Statistical measurements
are essential to many security analyses and are used, for
example, to detect port scans. (ii) Connection offloading
allows network monitoring systems to offload the handling
of non-established connections into hardware. (iii) Hard-
ware TCP reassembly reduces the connection-specific state
of network monitoring systems. Finally, (iv) reliable pattern
matching in hardware facilitates, e.g., protocol detection that
allows network monitoring systems to classify traffic early
on in the processing pipeline. As implementing any of these
requires effective communication between networking equip-
ment and the network monitoring system, we also envision a
set of open protocol extensions that piggy-back the necessary
information on top of regular networking traffic.

The rest of this paper is structured as follows: In §2 we
outline the hardware design necessary to realize the outlined
features. §3 discusses hardware control and feedback includ-
ing the software component, and §4 reviews the design of
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our architecture. Finally, §5 presents related work before we
conclude in §6.

2. HARDWARE SUPPORT
In this section, we present four different areas in which

network hardware can be used to increase the effectivity of
network security monitoring: §2.1 presents statistical mea-
surements, §2.2 outlines connection offloading, §2.3 sketches
TCP reassembly, and §2.4 discusses pattern matching &
protocol detection.

2.1 Statistical Measurements
Statistical summaries provide a key tool for profiling and

protecting operational networks. Network operators routinely
measure properties like throughput, connection sizes, port
distribution, and host fan-out. By applying thresholds to
these measurements, they can drive statistical anomaly detec-
tion, including reporting network scans. While conceptually
simple, computing these measures imposes substantial load
on software implementations, particularly in load-balanced
settings where counters must remain synchronized across
multiple independent monitoring systems [1, 35].

Moving these statistical measurements directly into net-
working hardware provides key benefits. In addition to of-
floading the monitor, the network-level vantage point has
two additional advantages. First, it provides network opera-
tors with ground truth on what is actually happening in the
network; effects on the monitoring path, such as packet drops
due to CPU congestion, will not affect the results. Second,
thresholds can trigger immediately on the hardware, with
much less latency than a load-balanced setting can provide.

We envision hardware measurements to be implemented by
letting users specify a mask over a combination of OpenFlow
fields, while allowing users to specify aggregations. Typically,
fields like IP addresses, transport-layer ports, TCP flags or
switch input ports are useful for counting. For each of these
components, a user should be able to select to either match
against it, which will let the device consider only packets with
a corresponding value; or mark them as specifying a grouping
defining the measurement unit. (Wildcards are possible for
all elements.) Figure 1 shows a simplified example with two
rules. The example port 80 packet matches the second rule,
which groups by source IP and destination port.

We aim to track three pieces of information for each of
the groups. The first two pieces are the packet count and
the byte count. The third piece of information tracks the
type of packets that were received; for TCP, this would e.g.
track that a SYN was followed by a SYN-ACK, followed
by data, followed by FIN. This mimics a feature of the Bro
network monitor, the connection history, which regularly
proves highly valuable to have available for incident analysis.
Once a rule becomes active, the device will report back the
current register values in configurable intervals by inserting
a custom reporting header (see §3) into the packet stream.
Optionally, a rule can also define thresholds for the two
numerical registers. When crossed, the device will insert a
custom header into the affected packet to immediately notify
the network monitoring system.

2.2 Offloading Non-established connections
Network monitoring systems normally track the state of all

flows on the network—a resource-intensive task that requires
computation and memory updates for every single packet.

Upon closer examination, however, it turns out that one
could skip tracking a substantial subset without loosing
much information.

In today’s network traffic a surprisingly high number of
TCP connections are never fully established: they consist
only of SYN packets to nonexisting hosts or services. This
is typically due to scanning activity. To give a current
example, more than 50% of the 160-180 million inbound con-
nection attempts per day at the Lawrence Berkeley National
Laboratory never see any response. By handling all these
connections fully in hardware, only sending summaries to the
network monitor for logging purposes, network monitoring
systems would not need to track any state for them.

This approach can be implemented in hardware by allocat-
ing a small, fixed-sized memory record per TCP flow, just
enough to store the key information from a SYN packet (in-
cluding timestamp, IP addresses and ports, and the initial
sequence number). When a connection’s originator sends
the first SYN packet, the device records its information, but
does not yet forward the packet to the monitor. If the device
sees a responder acknowledging that SYN, it first regener-
ates the originator’s initial packet from the stored record
before forwarding the response. For connections that are
never fully established, the device eventually expires the
record and then forwards a specially marked, regenerated
SYN packet that the network monitor can identify as such.
The system can then directly log it without going through
its state management logic.

Such an approach has already been implemented in soft-
ware by Dreger et al. [13]. There, however, the benefit
remained too small in practice to provide much value, as
the packets were still reaching the system. Implementing
the scheme in hardware promises a much larger pay-off—it
essentially provides “shunting for network scans“.

While implementing this approach on its own would make
detection of port and address scans more difficult, this can
be addressed by combining it with the hardware-accelerated
statistics we present in §2.1.

2.3 TCP Stream Reassembly
As discussed above, tracking connection state remains an

expensive operation for network monitoring systems. We
argue that today’s powerful network hardware should make
it possible to perform full TCP-layer connection handling in
hardware, including all TCP stream reassembly. The goal is
to send a well-defined, in-order data stream to the network
monitor, freeing up CPU and memory resources by skipping
reassembly and buffering. In addition, TCP reassembly in
hardware enables offloading further tasks to the device that
depend on reassembly as a preprocessing step, such as reliable
pattern matching and dynamic port-independent protocol
detection; we discuss this in §2.4.

To implement TCP stream reassembly in hardware, three
main components have to be managed by the hardware: (i) a
session table indexed by addresses and ports, (ii) TCP state
machines, and (iii) buffers of reordered packets. The reassem-
bled TCP stream can be passed on to network monitoring
software as a normalized flow of TCP packets, now in the
right order. Flows can be augmented with a unique flow ID
through a custom header (see §3) to make it easier for the
software to identify packet streams.

An important challenge with hardware reassembly concerns
running out of buffer space—a situation no implementation
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Figure 1: Hardware based statistical summaries. Rule definitions marked with G define the grouping. Rule

definitions marked with M apply only for matching. Rule 1 counts packets with a destination port of 22
grouped by source IP. Rule 2 counts SYN packets originating from each 10.x.x.x address, grouped by source
and destination port. Here, the current packet matches Rule 2 and increases the corresponding packet counter.

will be able to avoid given the limited size of high-speed
memory in networking devices. In [11], Dharmapurikar et al.
present a design for in-hardware reassembly that addresses
this. First, they show that for most traffic, memory usage
is not a concern due to their generally low level of reorder-
ing. For the relatively few uncommon cases where it is, the
author’s inline system can take active remedies, making it
robust even against adversaries. While a passive monitor
does not have the option to manipulate the traffic, we believe
that Dharmapurikar et al’s approach can generally work well
in that setting, too, if combined with an alternative fallback
mechanism: reverting to in-software reassembly if a flow
exceeds the hardware’s capabilities to reassemble it, first
passing any already buffered data on to the monitor. This
approach allows to keep most of the TCP load away from the
network monitor while addressing the hardware’s limitations.

2.4 Reliable Pattern Matching
Pattern matching is a task that hardware can perform

extremely efficiently. Yet, outsourcing pattern matching
remains a problem for network monitors, as correct results
depend critically on matching against already reassembled
payload streams—a capability that NICs and switches do
not offer today. The work we discuss in §2.3 will provide that
missing piece: once a device can reassemble, adding efficient
pattern matching on top will be straight-forward leveraging
established technology.

In turn, having pattern matching will then facilitate fur-
ther advanced tasks in hardware as well. As one intriguing
example, it makes it possible to move the first stage of port-
independent protocol detection [12] into hardware devices.
This frees up a significant load on the software side. In
addition, it enables the possibility of using negative match-
ing results: as a monitor cannot further parse a connection
if it does not recognize its protocol, we can automatically
stop forwarding data flows that do not match any of the
prefilters—and hence would be ignored anyways. In other
words, the device will now filter out directly all traffic that
does not contribute anything to the monitoring results.

3. HARD-/SOFTWARE INTERFACES
To implement the schemes we discuss above, network mon-

itoring systems need to interact with network hardware in
two ways: the software needs to (i) control the device, and
(ii) receive back results from offloaded processing. To remain
independent of any specific type of device for either type of
communication, we can design standardized APIs for these
exchanges, per the following.

3.1 Control & Feedback
OpenFlow is already supported by a multitude of hardware

devices; this even includes programmable NICs [25]. While
the standard limits the operations available by default, addi-
tional capabilities can be expressed through a set of custom
extensions that devices can implement to support our new
functionality.

While exercising control has become common, reporting
results back to software-land remains underappreciated in the
typical SDN paradigm, leaving standard protocols and APIs
ill-suited to this use case (e.g., OpenFlow limits feedback to
reporting number of packets and bytes per flow, and even
leaves the implementation of that feature optional).

We thus envision creating a new reporting mechanism that
uses a dedicated packet header format carrying signaling
information to an attached network monitor, akin to how
IEEE 802.11 operates for the Radiotap [27] header. Devices
can then piggy-back information on top of existing packets
by inserting the new header in between their Ethernet and
IP layers. If information is not directly associated with a
certain packet, devices can create otherwise empty packets.
In either case, networking monitoring systems can recognize
and parse these headers while inspecting the network traffic.

This new header should consist of a binary tagged format,
with the tags signaling different types of information, such
as packet counts for a flow or the data volume seen for an IP
address. As a side benefit, this also opens up the possibility
of leveraging this header to standardize transmission of high-
precision packet timestamps—a feature that many switches
already support, yet today implement using vendor- or even
device-specific formats.

3.2 Software design
On the software side we aim for a design that is as trans-

parent to the operator as possible. The standardized tagged
framing format can automatically be recognized by network
monitoring systems without requiring any more configura-
tion. Enabling new hardware features will require just a
slight amount of configuration. We envision the user only
having to provide the IP address, as well as authentication
credentials, to the hardware that implements the new primi-
tives. OpenFlow can be used for autodiscovery of the exact
featureset that is supported by the hardware.

To enable a transparent user experience even if hardware
may support functionality only partially in a specific setup,
network monitoring systems can fall back to software as
necessary. Good examples are the summary statistics frame-
work [1] as well as the SDN framework [2] of Bro. Both of
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them provide high-level APIs that let the user describe the
outcome of what they want to achieve (e.g., count connec-
tions to port X per minute grouped by IP). This kind of
task-oriented design enables the software to automatically
push rules that can be handled by the hardware out to it,
while doing more complex manipulations in software. An
example would be to do counting of port distributions in
hardware; however, if a query requires protocol parsing (like,
e.g., count all hosts using a certain certificate), it will be
handled in software.

4. DESIGN
Figure 2 shows a high-level overview of a design integrating

all our components. It can be implemented either inside of a
network interface card, or inside of a switch. If implemented
inside a switch, only traffic to specified output ports gets
enriched with additional metadata; configuration should be
similar to configuring a standard monitor port. Inside the
hardware, packets go through a set of processing pipelines.

Statistical measurements need access to the raw, unmodi-
fied data packets (for exact packet counts), and are performed
as a first step. During these measurements, custom headers
(see §3) are attached to packets to show current counter val-
ues and notify the network of crossed thresholds. In the next
step, TCP connection tracking is performed in the networking
hardware; for TCP only packets of established connections
are further processed (non-TCP packets skip this and the
next stage). The TCP reassembly stage converts packets into

an ordered byte stream. In the protocol pattern matching
phase, the custom header is used to attach information about
matches to the packet stream before the enriched packets
are passed to the network monitoring system.

The individual features, statistical measurements to per-
form, and patterns to match, are configured via OpenFlow
extensions using the SDN Engine of the switch (or NIC);
configuration will typically be performed automatically by
the respective parts of the network monitoring system that
are able to use the feature set of the hardware.

5. RELATED WORK
Besides P4 [4] and POF [32], which we mention in §1, there

are several other proposals that examine how to compile pro-
grams, or offload operations to switches or other networking
hardware [18, 29, 16, 26]. Several past projects have pro-
posed to use SDN or other hardware interfaces to allow an
otherwise passive network monitor to actively block traffic
in the network [21, 2, 31]. Other proposals use hardware to
stop forwarding traffic flows considered benign to the network
monitoring systems [15, 37, 3, 8].

A wealth of work evaluates the interplay of network moni-
toring and software defined networking, for example, using
OpenFlow as a source of packet data [38, 30]. Other work
uses information sourced from switches, e.g., using OpenFlow
counters or flow expiry events [6, 36, 20].

The viability of efficiently implementing TCP stream re-
assembly in hardware has been shown in several works [11,
40]. Moshref et al. [22] discuss tracking TCP state in hard-
ware, albeit without performing reassembly.

Most closely related to our work, but different in its goals,
Narayana et al. [23] discuss how to use modern network
hardware for network performance measurements. They
present a SQL-like query language that allows users to per-
form queries over network traffic and show a hardware design
based on a programmable key-value store primitive that can
be used to implement this on switches. OpenSketch [39] is
a proposal for hashing, filtering, and counting in the data
plane combined with a measurement library in the control
plane. In difference to our approach, OpenSketch aims at
more complex statistical operations using probabilistic data
structures. UnivMon [19] discusses how to implement certain
streaming algorithms in hardware using P4. Nelson et al. [24]
propose new switch features to determine the correctness of
cross-packet properties.

6. CONCLUSION
In this work, we present the design of a comprehensive

framework enabling network monitoring systems to effectively
deal with large volumes of traffic. We show a new hardware
design that can be implemented on current programmable
network hardware. Simultaneously, we outline an OpenFlow-
based command protocol and a new tagged feedback protocol.
On the software side, the changes should be transparent to
the user and will be handled by the respective frameworks
in the network monitoring systems.

More generally, we argue that offering more specialized
capabilities and APIs for applications with special demands,
like network monitoring systems, opens up a wealth of new
possibilities for the entire ecosystem—creating a more spe-
cialized, viable approach to software defined networking.
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