
Count Me In: Viable Distributed Summary
Statistics for Securing High-Speed Networks

Johanna Amann1, Seth Hall1,2, and Robin Sommer1,2

1 International Computer Science Institute
2 Lawrence Berkeley National Laboratory

Abstract. Summary statistics represent a key primitive for profiling
and protecting operational networks. Many network operators routinely
measure properties such as throughput, traffic mix, and heavy hitters.
Likewise, security monitoring often deploys statistical anomaly detectors
that trigger, e.g., when a source scans the local IP address range, or
exceeds a threshold of failed login attempts. Traditionally, a diverse set
of tools is used for such computations, each typically hard-coding either
the features it operates on or the specific calculations it performs, or
both. In this work we present a novel framework for calculating a wide
array of summary statistics in real-time, independent of the underlying
data, and potentially aggregated from independent monitoring points.
We focus on providing a transparent, extensible, easy-to-use interface
and implement our design on top of an open-source network monitoring
system. We demonstrate a set of example applications for profiling and
statistical anomaly detection that would traditionally require significant
effort and different tools to compute. We have released our implementation
under BSD license and report experiences from real-world deployments
in large-scale network environments.

1 Introduction

Researchers and operators alike routinely measure statistical properties of network
traffic, such as throughput, traffic mix, and “heavy hitters”; both for traffic
profiling and control, as well as for specific security purposes when aiming to spot
activity that “doesn’t look right”. For the latter, statistical anomaly detection
proves particularly valuable by reporting activity that exceeds levels one would
normally expect so see, such as during port and address scans, login brute-forcing,
and application-layer vulnerability probing. Traditionally, we find a diverse set
of approaches in use for implementing such monitoring, typically limited to
traffic features readily available in existing data sets such as NetFlow records,
SNMP counters, IDS output, or system logs; and often implemented in the form
of ad-hoc shell scripts processing files offline in batches. While conceptually
most profiling and anomaly detection tasks leverage just a rather small set of
statistical primitives, existing approaches tend to hard-code either the feature
set they operate on or the specific computation they perform; and regularly
both. Consequently, sites find it challenging to later adapt a setup to changes in

requirements, miss out on opportunities for reuse in different settings, and see
little incentive to optimize an implementation for performance.

In this work we present a novel summary statistics framework that facilitates
a wide array of typical profiling tasks and security applications. Our system
processes high-volume packet streams in real-time, operates transparently on
arbitrary features extracted from all levels of the protocol stack, and aggregates
results across independent monitoring points distributed across a network. We
focus on providing a transparent, easy-to-use user interface that, in particular,
hides the communication in distributed setups behind a simple, intent-based
API. We target operational deployment in large-scale network environments, with
link capacities of 10GE and beyond; and we implement our design on top of an
existing open-source network monitoring system that is regularly deployed in such
settings. Our implementation includes a set of probabilistic data structures to
support memory-efficient operation, as well as a plugin interface that allows users
to extend the supplied range of statistical primitives. We demonstrate a number of
real-world example security applications, including computation of traffic matrices,
detection of IP scans and SQL injection, and real-time “top-k” measurements to
determine, e.g., the most frequent hosts, HTTP destinations, or DNS requests.
We furthermore interface the latter to a browser-based visualization library that
renders the current “heavy hitters” in real-time for immediate inspection. We
evaluate our system in terms of the overhead it imposes on the underlying network
monitor with regards to CPU, memory, and inter-node communication; and we
find it to scale well in realistic settings. We have released our implementation
as open-source software under a BSD-license as part of the recent release of the
underlying network monitor. It is in deployment now at a broad range of sites,
where it helps operations to protect their networks.

We structure the remainder of this paper as follows. §2 presents the moti-
vation and design of the summary statistics framework, and §3 describes our
implementation. §4 demonstrates a number of real-world example applications,
along with experiences from operational deployments. In §5 we asses performance
characteristics. §6 discusses related work, and we conclude in §7.

2 Design

Our work introduces a novel summary statistics framework that offers a flexible
platform to compute a wide variety of summary statistics in large-scale operational
network environments. In the following we first review the underlying motivation
and then walk through a number of design aspects for the framework.

2.1 Motivation

While summary statistics constitute a crucial ingredient for many operational
network monitoring tasks, existing implementations generally cater to a specific
application or setting (see §6). Our framework instead aims to enable users to
define their own statistics, with no limitation on what input or computation to

use. The challenge with this approach lies in designing a system that provides such
flexibility while also offering the efficiency required to accommodate large-scale
deployment in high-performance settings.

To illustrate our motivation, consider the task of counting. Researchers and
operators alike tend to ask questions about their networks such as “How many local
IP addresses do we see?”, “What system produces the most traffic?”, “What are the
prevalent application protocols?”, and “Is there any host unsuccessfully querying
a large number of DNS names?”. Traditionally, answering such questions requires
using a variety of different tools. While conceptually these questions all come
down to counting features, they process conceptually quite different information,
from packet-level information like IP addresses to complex application-layer
attributes such as rejected DNS requests. Our goal is to unify the computing of
such results within a single system that decouples feature extraction from the
statistical infrastructure, providing users with a platform for answering a wide
range of their questions.

From experience with research and operations, we identify two overall types of
applications that network-based statistics tend to support: (i) network profiling
aims to answer questions as sketched above for characterizing ongoing activity;
and (ii) statistical anomaly detection identifies situations where observed features
exceed an expected range, potentially leading to a security incident. Regarding the
former, while the range of possible profiling tasks is large, most consist of a rather
small set of computational primitives, such as summation and aggregation of
values, standard set operations, computing simple measures such as maximum and
average, and also sorting. Turning to statistical anomaly detection, one typically
finds conceptually simple measures deployed operationally; often just straight-
forward threshold schemes that trigger when activity exceeds a predetermined
value or ratio. The most common application is scan detection, which finds hosts
probing the local network by spotting an excessive number of failed attempts.
While traditionally scan detection refers to IP address or TCP/UDP port probing,
the concept extends to application-layer features as well, including probing web
servers with requests, email servers with destination addresses, DNS servers with
lookups, and also probing for vulnerable systems by trying application-layer
exploits. While many monitoring systems support profiling and/or statistical
anomaly detection, their implementations typically hardcode either the feature
set they operate on or the specific calculation they perform.

2.2 Objectives

We identify the following objectives for our summary statistics framework.
Simple, yet flexible user interface. The interface that the framework

exposes to the user should be easy to understand and use, yet sufficiently flexible
to support computation of a wide range of target statistics.

Data agnostic. The framework should be data agnostic and avoid imposing
any constraints on the features it operates on.

Extensibility. The available statistical functionality should be adaptable
and extensible to computations not supported out-of-the-box.

Real-time operation. The framework should process input in real-time and
provide results, including alarms, as quickly as possible.

Scalability. The framework needs to scale to large networks, including support
for multiple traffic sources for either distributed monitoring or load-balancing
purposes.

Statistical
FrameworkObservationObservationObservation

Summary
Statistics

Trigger

Reducer

Fig. 1. Basic Architecture.

2.3 Architecture

Figure 1 summarizes the summary statistics framework’s high-level architecture.
It observes a stream of tuples (key, value) in which in general both key and value
represent features derived in real-time from the incoming network traffic. As it
processes the stream, the summary statistics framework continuously reduces each
key’s values to an aggregate result. The framework also continuously evaluates a
predicate on these aggregates to flag specific situations by executing corresponding
triggers. Finally, at the end of a measurement interval, the framework reports
the final summary statistics to the user in the form of (key, agg) pairs where agg
is the final aggregate value for that key.

As one application example consider a simple TCP scan detector. Observations
might take the form of tuples (s, d) representing failed connection attempts from
a source address s to a destination address d. A reducer Unique would compute
the number of unique destinations d for each source s, and a predicate Threshold
would flag if that exceeds a specified limit by executing a ScanAlarm trigger that
reports an alarm. As another example, if one wanted to compute the most popular
DNS names overall, the observation values would be query names extracted from
DNS traffic. One would then aggregate all values into a single global result by
fixing the observation key to a static value, and deploy a “top-k” reducer that
computes the k most frequently seen values among its inputs.

The summary statistics framework supports deployment in settings where
the traffic is not just monitored by a single process, yet with sets of physically
separated monitors, as long as the instances see disjunct packet streams. This
could be at different ingress points of a large network, or in a cluster setting where
a load-balancer splits up the overall traffic to sent individual slices to separate
monitoring backends (as, e.g., in [25]). In such a setting the summary statistics
framework computes results transparently for the overall traffic aggregate, similar
to what a single instance would produce if it were seeing all the traffic at one

location. To accommodate such settings, we extend the basic architecture into a
distributed setup in which independent sensors reduce values locally first, and
then at the end of a measurement interval forward their results to a master server
that merges them into global aggregates. That server then also evaluates the
predicates and executes the trigger. Figure 2 illustrates the distributed setting. As
the reduced intermediary results will typically be small in volume, the architecture
scales well with increasing numbers of sensors.

Master

Sensor 1

Tap

Observation Reducer Result

Observation Reducer Result

Sensor n

Tap

Observation Reducer Result

Observation Reducer Result

Merger

Merger

Predicate

Trigger

Result

Result

Notify

Values
& Poll

Notify

& Poll

Values

Observation Reducer Statistical Framework Results & Outputs

Summary
Statistics

Fig. 2. Distributed Architecture.

As one additional ingredient to the distributed operation, we add result
polling that allows the server to request intermediary results from the sensors
on demand. Normally, the server would evaluate predicates only at the end of a
measurement interval once it has received all the local results. As that however
might introduce a potentially significant delay until triggers execute, we introduce
two additional optimizations. First, we allow the server to poll sensors for their
current values on demand, even before the end of the measurement interval.
It can then already evaluate the predicate on the received intermediate values.
Polling alone however would not reduce trigger latencies sufficiently without also
causing significant communication overhead. Hence, we furthermore provide the
sensors with a notification mechanism to signal that their intermediate local
values have changed sufficiently to warrant requesting an update. For example,
for a threshold computation a sensor could notify the server once it has observed
20% of the specified limit locally, with the assumption that other sensors are
likely seeing similar activity and, hence, globally the threshold might have been
crossed. Upon receiving the notification, the server polls all the sensors, executes
the predicate, and runs the trigger if applicable.

2.4 Reducers

We conclude this section by examining the properties of reducers in more detail, as
they have to satisfy a number of requirements to fit with the framework’s operation.
Recall that a reducer processes (key, value) pairs, aggregating them into outputs
(key, agg) where agg is an aggregate of all of key’s value as determined by the
reducer’s computation. In the following we first look at constraints we impose on
reducers, and then present a set of examples that satisfy these requirements and
all come with our implementation.

Composable results. As a crucial property for reducers in the distributed
setting, we require composability, i.e., support for aggregating the sensor’s local
results at the server-side. As a simple example, a reducer adding up numerical
observations is trivially composable: the global sum is the total of the local results.
This constraint can however be challenging to satisfy for other operations, even
if conceptually simple. For instance, when sampling input randomly, deciding
which samples to choose during merging without biasing the result is non-trivial.

Constant Memory Size. When processing observations reducers typically
have to keep internal state during the measurement interval (e.g., the sum of
all values so far). However, to reliably support computing statistics on arbitrary
input volumes we require a constant bound on the amount of memory a reducer
maintains. Due to this restriction, our framework can, e.g., not compute the
median across observations.

Meaningful intermediary results. To support arbitrary measurement
intervals as well as continuous predicate evaluation, a reducer’s intermediary
values must be meaningful on their own at any time. This is again obviously the
case for a sum, which always reflects the current total; but less so for some of
the more complex data structures.

Summation, Average, Deviation, Variance, Maximum, Minimum.
These standard statistical measures are frequently used for traffic measurement
tasks. They all support a stream-based calculation model where the reducer holds
just the current result reflecting all observations seen so far, updating it when a
new observation comes in.

Unique. Determining the number of unique observations proves highly use-
ful for many network-oriented measurement tasks. However, a naive set-based
implementation would have a memory requirement of O(n) with n represent-
ing the number of observations, rendering it infeasible to use. Instead, we use
a probabilistic version based on the HyperLogLog data structure (HLL; [10]).
HLL provides approximate results with well-defined error margins. It uses O(1)
memory, is composable, and provides meaningful intermediary results.

Top-k. Finding the top-k “heavy hitters” represents another common task.
However, similar to Unique, a naive implementation requires O(n) memory, with
n the number of observations. We thus likewise choose a probabilistic version
instead: Metwally et al’s algorithm [17], which in addition also provides estimates
on the number of times specific elements were seen. Just as HLL, the algorithm
satisfies all our constraints, including composability (see [5]).

Sampler. For many applications it is not only interesting to know the
final result itself yet also to receive with it a sample of individual contributing
values (e.g., when seeing an unusually high number of DNS requests from a single
source, seeing a few example requests can prove illuminating). We support that
by providing a “Sample” reducer that maintains a fixed number of k uniformly
distributed samples taken out of the complete observation stream. By using
reservoir sampling [26], we are able to satisfy all our constraints.

2.5 Comparison with MapReduce

It is no accident that our model, and terminology, shares similarities with MapRe-
duce [6]. They both operate in similar phases. The “Map” step of MapReduce
corresponds to taking observations in our model; in either approach, input data
maps to a key and a value. The “Reduce” step of MapReduce is equivalent to our
server-side merging of results computed locally at the sensors. What we call a
“reducer” indeed corresponds to a “combiner” in a refinement of the MapReduce
model: combiner functions merge partial results before data gets forwarded [6].
The underlying reason for this naming difference is that in our design the main
part of the data reduction does indeed occur already on the sensor nodes.

One difference between the two models concerns the input side. While either
approach assumes suitably pre-split sets of input, MapReduce does not tie them
to a specific compute node. In our model, by tapping disjunct packet sources
yet not further dividing up their inputs, we implicitly link each source with one
specific sensor that processes it. While this remains less flexible, it provides a
significant performance advantage by effectively leveraging the network itself
for partitioning input appropriately, either indirectly by virtue of its structure
(in the case of tapping different physical locations), or directly via a front-end
load-balancer (in the case of a cluster setup [25]). In either case we avoid the—
potentially prohibitive—performance penalty of redistributing traffic within the
summary statistics framework.

Overall, we emphasize that the two approaches share significant similarities.
As such, we do not consider our framework’s abstract computational model the
primary contribution of this work, yet rather its integration into an efficient,
deployable system that provides a transparent, simple-to-use API to the user.

3 Implementation

We implement our design of the summary statistics framework on top of the
Bro network monitoring platform [3,19]. Bro aligns well with our objectives as it
(i) provides the user with the necessary flexibility through its Turing-complete
scripting language; (ii) extracts a wide range of features from network traffic to
measure; and (iii) supports distributed operation in cluster setups. We implement
the summary statistics framework completely within Bro’s scripting language,
with no changes to the system’s C++ core for the general functionality. As the only
extension to Bro’s internals, we add support for the probabilistic data structures

that some of the reducers deploy. Our implementation comes with pre-written
analysis scripts that leverage its capabilities for detection of, e.g., host and port
scans, traceroutes, and SQL injection attacks. In the following, we discuss our
implementation in terms of its user interface (§3.1), cluster integration (§3.2),
and computation plugins (§3.3) that reducers can leverage.

3.1 User Interface

The user interface of the summary statistics framework exposes a set of public
functions in Bro’s scripting language. In the following, we briefly sketch the main
functionality available to users. As a simple example we assume the setting of a
small network site that aims to track the number of connections that each local
host initiates to external destinations, recording them into a log file on a hourly
basis.

Measuring. Setting up the analysis requires two steps: (i) feeding all outgoing
connections into the summary statistics framework as observations, and (ii)
defining a corresponding summary statistic that aggregates connections by their
originator addresses. For the former, the framework provides the observe()
function, which injects a key/value pair into an observation stream. The framework
supports an arbitrary number of independent streams and identifies them by
user-chosen names. For the example application we hook into Bro’s connection
processing and pass on every connection attempt originating from a local host: 3

event connection_attempt(c: connection) {
[... return if connection does not originate from the local network ...]
SumStats::observe(

stream = "host-conn-attempts"; # Name of observation stream
key = c.originator; # Observation key (IP address)
value = 1; # Observation value ("one attempt")

);
}

For the second step we first define a reducer that adds up connection attempts:

local r1: SumStats::Reducer = [
stream = "host-conn-attempts"; # Name of observation stream
apply = SumStats::SUM; # Reducer plugin to use

];

Here, we link the reducer to the observation stream to process, host-conn-
attempts, and specify Summation as the statistical operation to apply to the
incoming values. For a list of currently supported operations, see §2.4; users can
add further ones by supplying custom plugins (see §3.3).

Next, we define the actual summary statistic by calling the framework’s
create() function. In its simplest form, the function takes just four parameters:

3 In this and later examples we simplify Bro’s syntax for better readability.

SumStats::create(
name = "local-origins"; # Name of the summary statistic
epoch = 1 hour; # Measurement interval (epoch)
reducers = set(r1); # Set of reducers to deploy
epoch_result = epoch_func; # End of epoch callback function

);

With that, the summary statistic configuration is complete. During runtime,
Bro will now call the epoch_result function each hour and provide it with the
number of outgoing connections per local host. The function can process the
data arbitrarily, such as by logging the information into a file.

Thresholding. We now extend the previous example to report hosts that
exceed a predefined threshold of connection attempts. Here, our implementation
deviates slightly from the discussion in §2. While the design provides for a generic
predicate to check for arbitrary conditions while a computation is in progress,
our implementation currently hardcodes threshold checks as the only available
option. In our experience, thresholding represents the dominant application.
By specifically targeting it, we can simplify both the interface (making it more
intuitive for users) and the implementation (reducing complexity in the distributed
setting). However, there’s no conceptual limitation that would prevent us from
adding the more general case in the future.

Adding a threshold check to the previous example involves passing three
more parameters to the create() call: a function that retrieves the current
measurement value for a key, a numerical threshold to compare that value with,
and the trigger function to execute when the value exceeds the threshold:

SumStats::create(
[...]
threshold = 10000.0; # Threshold value
threshold_val = val_func; # Retrieve current value
threshold_crossed = crossed_func; # Alarm.

);

The val_func receives a key and the current intermediate reducer values for
this key. It uses them to return the value to be checked against the threshold.

function val_func(key, val) : double {
return val["host-conn-attempts"].sum;

}

In this example, val_func simply returns the current number of connection
attempts for a host.4 However, the function could be more complex than that. In
our application, one could for example instead implement a threshold relative to
the number of successful connections. For that one would add a second observation
stream, say host-conn-successes, along with a corresponding reducer r2 added
to the create() call. This modified val_func would then calculate percentages:
4 As the code suggests, the state is maintained in a number of nested table struc-
tures (hash maps) indexed by the measurements.

function val_func(key, val) : double {
return val["host-conn-attempts"].sum / val["host-conn-successes"].sum;

}

For completeness, we conclude the example by showing the trigger function
that turns an exceeded threshold into an alarm via Bro’s provided NOTICE
function:

function crossed_func(key, val) {
NOTICE("Host %s exceeded conn threshold: %d conn attempts", key, val);

}

3.2 Cluster Integration

As discussed in §2.3, the summary statistics framework targets deployment in
distributed settings where a set of local vantage points contribute to a global
measurement. Bro supports distributed setups through clustering [25]. In a Bro
cluster, a set of worker nodes examines independent traffic streams and share
their results through a central manager node. Each node might either monitor a
physically separate point in a network or, more commonly, contribute to analyzing
a single high-speed link by analyzing a smaller traffic slice that a front-end load-
balancer assigns to it. Typically such load-balancing operates on a per-flow basis
and, hence, satisfies our design constraint of requiring disjunct input streams in
distributed summary statistics framework deployments.

Our Bro implementation closely follows the distributed design presented
in §2.3, including the optimized notification/polling scheme for timely trigger
execution. We put particular emphasis on hiding the increased complexity of the
distributed setting from the user: the framework uses the same API for both single-
instance and distributed setups; user-supplied script code works transparently
in either setting. In particular, users do not need to specify which parts of their
code executes where; the summary statistics framework automatically runs the
respective functionality on the correct nodes (i.e., extracting observations and
processing reducers on the workers; executing aggregation, thresholding, and
triggers on the manager).

3.3 Computation Plugins

The framework includes support for a number of computations for reducers to
deploy. Their implementations use a generic plugin interface that also allows users
to add further schemes of their own. Each computation plugin implements two
functions: one for adding a new observation, and one for merging computation
state from different nodes; either function has also access to the time range that
a observation stream spans and may include that into its calculations.

As an example, we show the implementation of the Minimum5:

Update current minimum.
function add(key, val, state) {

if (val < state.min)
state.min = val;

}

Aggregate two values by taking the smaller.
function aggregate(out, in1, in2) {

out.min = (in1.min < in2.min) ? in1.min : in2.min;
}

In addition to Minimum, our implementation also provides plugins for Max-
imum, Sum, Average, Standard Deviation and Variance, Top-k), Unique, and
Sampling (see §2.4).

4 Applications and Deployment

In this section we demonstrate the summary statistics framework’s capabilities
with a set of example applications. The first four (scan detector in §4.1, brute-force
login detector in §4.2, SQL injection detector in §4.3, traceroute detector in §4.4)
ship with Bro since version 2.2, and many network sites use them operationally
now. We furthermore discuss three measurement tasks (traffic matrix in §4.6,
top-k in §4.5, visualization in §4.7) that we ran experimentally in production
environments. For these we make the corresponding (short) implementation
scripts available in a separate repository [2].

Note that these are only example applications demonstrating the capabilities
of the framework. In practice, operators will evaluate the suitability of the
summary statistics framework for their tasks and implement their own scripts as
appropiate.

4.1 Scan Detection

Detecting port and address scans constitutes an important capability for security
operations. We implemented a corresponding scan detector as a Bro script on
top of the summary statistics framework. The script tracks the number of unique
ports and destination addresses that each source IP attempts to connect to,
generating alarms when they exceed, by default, 15 or 25 attempts within a 5
minute interval, respectively. Users can easily adjust either threshold, as well as
the time interval. The script is about 160 lines long, with the bulk representing
logic for connection processing and customization functionality. The core of the
5 The actual implementation is slightly more verbose to deal with corner cases like
undefined values. We also again simplify the syntax to match previous examples.
Finally, we omit the definition of the state’s min attribute, which extends a predefined
data type to add plugin-specific storage that maintains the current value.

script consists of just two pairs of function calls setting up the summary statistics
and feeding in observations. In particular, there is no need for code to deal with
distributed Bro setups. For comparison, older Bro versions used to ship with a
manually written, complex scan detection script that consisted of over 600 lines
of script code, with most of that focusing on maintaining the necessary counters
inside nested hash tables.

Indiana University (IU) has been running versions of our new scan detector
script for more than 9 months on their 49-node Bro cluster, monitoring the site’s
10GE upstream link. Their total traffic (incoming and outgoing) peaks at about
13Gb/s on workdays and generally averages at about 5Gb/s. Figures 3 and 4
show the number of incoming scans to different destination addresses by time
and by weekday, respectively, for subinterval of that time, as identified by our
detector. At peak times, there are more than 290 unique external IP addresses
conducting scans of the network each hour. In total, IU encountered 33,452
scanners from 2014-02-19 to 2014-03-20. The network operators use the script’s
output to automatically block external scanners at the border router in near-real
time. Note that due to this automated blocking, with blocks often being triggered
before the end of a monitoring interval, the numbers in this section represent a
lower bound.

5000

10000

15000

Feb 24 Mar 03 Mar 10 Mar 17

S
ca

nn
ed

 h
os

ts
 p

er
 h

ou
r

Fig. 3. Incoming address scans per hour
from 2014-02-19 to 2014-03-20 at IU.

Sun Mon Tues Wed Thurs Fri Sat

0

5000

10000

15000

0 9 18 0 9 18 0 9 18 0 9 18 0 9 18 0 9 18 0 9 18

A
ve

ra
ge

 s
ca

nn
ed

 h
os

ts
 p

er
 h

ou
r

Fig. 4. Aggregate count of incoming addr.
scans from 2014-02-19 to 2014-03-20 at IU.

4.2 Brute-force Login Detection

A common type of attack concerns brute-forcing accounts by trying a large
number of username and password combinations. We implemented scripts to

detect such attacks for the FTP and SSH protocols. For FTP, the script counts
the number of failed FTP authentication attempts and generates an alarm when
it sees more than, by default, 20 attempts from a specific source to a particular
destination host within 15 minutes. For SSH, Bro provides a heuristic that
determines if a login succeeded or failed, based on the volume of data exchanged
as well as the number of packets seen during the session. Our script counts the
number of times this heuristic reports a successful login and triggers an alarm
when that number exceeds 30 in a 30 minute interval. A number of sites, including
Indiana University, are currently running the brute-force detection scripts in
their production setups.

4.3 SQL Injection Detection

We also created script for detecting automated SQL injection attacks, using a
similar thresholding approach as above. When targeting a web server, attackers
often iterate through a large library of canned injection URIs within a short time
frame. To detect this kind of attack, we first wrote a regular expression that
matches typical injection URIs (e.g., /site.php?site=5’ and 1=1 and ”=’).6
We then set up two summary statistic instances. Both count the number of times
the regular expression matches. For the first instance, the key is the source IP
address while for the second we use the destination address. In other words, the
first identifies attack sources (independent of how many victims each targets),
and the second reports servers under attack (independent of the number of their
attackers). In addition, both summary statistic instances also apply an additional
Sample reducer, which keeps 5 URIs that have matched the regular expression.
Once one of the instances hits a configured threshold of matching requests (50 in
5 minutes by default), the detector triggers an alert email that summarizes the
detected SQL injection attack, including the 5 URIs as additional context.

4.4 Traceroute detection

Traceroute detection constitutes another use-case for the summary statistics
framework. While a traceroute does usually not pose a direct security threat,
it may indicate reconnaissance preceding an attack. Traceroutes are however
challenging to identify in clustered monitoring setups where traffic is load-balanced
across different monitoring systems according to its 5-tuple of addresses, ports,
and protocol. As the ICMP packets belonging to one execution will often arrive
at different nodes, no single node can spot it by itself.

For our detector, we use a single summary statistic instance with two reducers.
One of them counts the number of packets per host pair with TTLs lower than
10. The second counts the number of ICMP Time Exceeded messages relating to
the same hosts.
6 This turns out harder than it sounds: We have developed, and continuously refined,
this regular expression for more than 5 years now by regularly evaluating network
traffic and adding new cases as we discovered them. The expression has a size of
more than 1,500 characters today.

We consider a traceroute to be in progress if we see at least one low-TTL
packet between a pair of hosts along with at least three matching ICMP Time
Exceeded messages. Leveraging the summary statistics framework allows to define
such a logic at a semantic level with a single if-statement, without needing to
consider the underlying traffic splitting any further. We validated this scheme
by running it on the Bro cluster of the National Center for Supercomputing
Applications at the University of Illinois, manually executing traceroutes and
sampling the corresponding reports during normal operation. Ignoring our own
activity, the large number of otherwise incoming traceroutes we saw (more than
2,000 a day) surprised us. Many of them turned out to be targeting a local content
management system.

4.5 Top-\bfitk

As examples of “top-k” measurements, we wrote a script that tracks (i) the top-10
source and destination hosts exhibiting the most established TCP connections;
(ii) the top-10 second-level domains in DNS queries; and (iii) the top-10 Host
header values present in HTTP requests.7 We consider only outgoing traffic and
calculate rankings over both 10-minute and 1-hour intervals.

DNS domain Upper bound \epsilon HTTP host Upper bound \epsilon

.akamai.net 276,592 0 b.scorecardresearch.com 123,293 0

.akamaiedge.net 185,150 0 www.google-analytics.com 111,760 0

.berkeley.edu 158,938 0 pagead2.googlesyndication.com 87,539 0

.amazonaws.com 148,584 0 ib.adnxs.com 77,521 0

.google.com 137,474 0 ad.doubleclick.net 72,156 0

.akadns.net 135,519 0 pixel.quantserve.com 70,284 0

.yuerengu.com.cn 92,210 0 www.google.com 62,996 0

.cloudfront.net 60,234 0 i1.ytimg.com 59,607 0

.spameatingmonkey.net 57,089 142 googleads.g.doubleclick.net 56,673 0

.ustiming.org 38,108 719 setiboincdata.ssl.berkeley.edu 56,513 0

Total DNS req. (exact) 4,220,837 Total HTTP requests (exact) 10,985,712

Table 1. Top-10 outgoing DNS 2nd-level lookups and HTTP Host values (19-3-2014,
15:15–16:15).

For demonstration purposes we ran this script on a 28-node Bro research
cluster operating at the University of California, Berkeley; monitoring the campus’
2x10GE uplink connections [25]. Daytime volume averages between 3-4 Gb/s
total. Table 1 shows a snapshot of the 1-hour DNS/HTTP statistics from an early
Monday afternoon. Recall that the top-k calculation uses a probabilistic data
7 The Host headers provides an application-level view of popular web sites, vs. just
looking at IP addresses. Web site addresses have become quite meaningless today
with many services running on generic cloud infrastructure.

structure and, hence, the results represent estimates. The table includes what
the algorithm reported as upper bounds for the number of times it encountered
each value. In addition, the table also shows the corresponding uncertainty \epsilon ;
subtracting \epsilon from the upper bound gives the lower bound. This means that,
e.g., a DNS request for .ustiming.org was encountered between 37,389 and
38,108 times. We see that generally the error rates remain very low, considering
the large amount of traffic with high numbers of unique DNS domains and
HTTP hosts (154,859 and 100,269, respectively, during the shown time interval;
calculated independently from logs). For these measurements, we configured the
probabilistic algorithm to keep at most 1,000 different values in memory for each
summary statistic at any point of time.

4.6 Traffic Matrix

The summary statistics framework can also be used to compute traffic matrices,
such as for breaking down overall volume by subnets. To demonstrate this, we
created a small Bro script which sets up a single summary statistics framework
instance using two reducers tracking the volume of incoming and outgoing traffic
by source, respectively. Additionally, the reducers define a key normalization
function, which maps the source address of each individual observation to the
containing /24 network in which the host resides. We deployed the top-k script
on the Berkeley research cluster discussed in §4.5. Table 2 shows the output for
the 5 (anonymized) subnets with the largest amount of total traffic during the
observed one-hour period, out of 502 unique local subnets encountered.

4.7 Real-time Visualization

As our final application, we extended the previous “top-k” setup to visualize the
results in real-time. See Fig. 5 for a screenshot. Internally, the extended Bro
script uses the intermediate value update mechanism of the summary statistics
framework to get current values every 15 seconds. It then sends the aggregated
valued to Bro’s logging framework, which supports a number of different output
formats including TSV files and databases. For this application, we added support
for Apache’s ActiveMQ message queuing framework so that Bro can send the
values directly to an ActiveMQ server. We created an HTML page that uses
JavaScript for visualizing the values via a persistent WebSocket connection. After
each update, the value changes are immediately reflected in the browser window.

5 Evaluation

In this section we evaluate the overhead introduced by the summary statistics
framework in terms of computation, memory, and communication. Our objective

Bytes

Subnet In Out Total

UCB Subnet A 124G 56.0G 180G
UCB Subnet B 123G 22.7G 146G
UCB Subnet C 39.7G 48.1G 87.9G
UCB Subnet D 23.3G 2.15G 25.5G
UCB Subnet E 18.6G 1.19G 19.8G

Table 2. UCB Top-5 local subnets by
total traffic (28-3-2014, 11:41–12:41).

Fig. 5. Screenshot top-10 HTTP hosts (by
headers) live visualization (4-4-2014, 9:28).

concerns ensuring that the implementation provides the performance necessary
to operate in large-scale distributed environments. We focus on two applications:
Top-k (§4.5), as the most resource-intensive application; and scan detection (§4.1),
which stresses the inter-node communication the most.

5.1 Correctness

We first briefly double-check correctness of the summary statistics framework’s
calculations. While not directly an issue for the simpler calculations, the proba-
bilistic data structures by design introduce errors into their results, along with
worst-case bounds derived from their mathematical foundation. In Table 1, we
show top-k results along with their error margins for a 1-hour measurement
period in a large-scale cluster setup (see §4.5). We cross-check the reported
numbers by calculating the actual top-k lists offline out of the log files that the
Bro cluster produced during the same execution. We find that despite using
the memory-efficient probabilistic data structure: (i) the summary statistics
framework correctly identifies all entries in the right order in all but two cases,
and (ii) all the actual values indeed fall within the given error margin. Regarding
the former, the two exceptions concern the top sources. During our measurement
the counts for 8 of the top 10 IP addresses were very close to each other. In both
cases, the reported uncertainty \epsilon (see §4.5) was greater than the difference to the
next values. Hence, a user can indeed conclude from the numbers that while the
reported ordering might not be fully correct, it must be closely matching the
actual activity.

5.2 Computational Overhead

Internally, the summary statistics framework is a complex module consisting of
several hundred lines of Bro script code for the basic framework, separate scripts
for the plugins, and low-level core support for the probabilistic data structures.
For evaluating the computational overhead that this extension introduces, we
captured a packet trace of about 20-minutes at the Internet uplink of UC
Berkeley (see §4.6). To keep the volume manageable we recorded just a subset
of the total traffic, corresponding to what one node of the Bro research cluster

processes (i.e., 1
28 of all flows).8 The resulting trace includes 19.8 M packets and

516 K flows, at a total volume of about 15GB.
We measure CPU load with three different configurations: (i) Bro’s default

setup with the summary statistics framework disabled; (ii) enabling the scan
detector from §4.1; and (iii) enabling the top-k script from §4.5; For each
configuration, we measure CPU utilization per 1 sec trace interval. The trace
is replayed using the pseudo-realtime mode [23] of Bro, which was created to
facilitate the realistic playback of packet-traces.

0.1 0.2 0.3 0.4 0.5 0.6

0
2

4
6

8

CPU utilization

P
ro

ba
bi

lit
y

de
ns

ity

●

●

●

● base load
using top−k
using scan

Fig. 6. Single node CPU load comparison.

e
b
c
d
f

g

i

a

h

1e+03

1e+05

1e+07

12:00 18:00 00:00 06:00 12:00

M
es

sa
ge

s
pe

r
15

 m
in

ut
es

SumStat
a: Addr. Scan
b: Apps
c: SQLi Attackers
d: SQLi Victims
e: SSH badclient BF
f: SSH Bruteforce
g: Mime metrics
h: Port Scan
i: Traceroute

Fig. 7. Exchanged messages per sumstat.

Figure 6 shows a corresponding probability density for the three configu-
rations.9 We see that while using the summary statistics framework imposes
overhead, it remains small for scan detection (0.4 percentage points more). The
difference with the top-k script (1.6 percentage points more) is more noticeable
due to the increased cost per observation that the more expensive maintenance
of the probabilistic data structure entails. In either case, we deem the overhead
low, relative to the input volume.

5.3 Memory Overhead

We next analyze the memory overhead introduced by the summary statistics
framework. For this we follow the same approach as for CPU, measuring memory
8 In other words, we assess the performance overhead for one worker node. We do
not examine the CPU overhead of the manager node merging the data structures as
that system is typically not CPU-bound and has sufficient head-room for additional
operations.

9 The measurement was done in a single-system Bro setup. However, we repeated it in
cluster setup with a separate manager process, with similar results.

usage while running Bro repeatedly on the same input trace with the same
three configurations. In all cases, we find the memory overhead imposed by the
summary statistics framework reasonable. Even there the mean overhead is only
about 6.7% (max. 179MB) in comparison to the baseline of a standard Bro setup.

5.4 Communication Overhead

Finally, we examine the communication overhead the summary statistics frame-
work incurs in cluster operation. We add a script to the Bro manager node that
logs all incoming and outgoing messages triggered by the summary statistics frame-
work. For each message we output its timestamp and further meta-information
for identifying its origin (e.g., the name of the reducer and the exact type of the
message). We ran this measurement live for 24 hours on a 57-node Bro cluster
of a medium-sized research organization that we have access to. The cluster
monitors uplink traffic averaging at about 1Gb/s during day-time hours. The
setup used the full set of standard summary statistic scripts that come with a
standard Bro installation, including detecting scans, traceroutes, SQL injection
attacks, and SSH bruteforcing; as well as using two custom scripts to measure
MIME statistics and traffic volume to several large sites (Google, Facebook, etc.).

Figure 7 shows a breakdown of the different summary statistics and the
message overhead each caused. We find the scan detector responsible for most of
the exchanged messages, due to the large number of incoming connections that
it needs to classify. In total, the nodes exchanged 1,930,564,662 messages, with
about half of them going from the manager to the worker nodes. This is due to
the manager always initiating the exchange of values (i.e., even after a worker’s
notification, it is the manager that then polls for updates). This means that each
node sends about 399.03 messages per second each way. Messages relating to
the intermediary updates constitute 0.40% of the overall communication. 69,810
times a worker node notifies the manager that it should request updates. In
27,704, or 39.68%, of these cases, the manager chooses to ignore that request (an
optimization that our implementation applies to limit simultaneously outstanding
key updates for the case where a set of keys triggers many notifications in short
succession; by default, the framework limits the number of simultaneously running
updates to 10 per summary statistic). In 15.98% of the cases that the request
is accepted by the manager, the target threshold has indeed been crossed, and
hence the manager alarms after aggregating the individual values.

Overall, we deem the level of communication realistic for such large-scale, high-
volume settings; and clearly within what Bro’s communication system is able to
handle [23]. This conclusion is supported by the Indiana University setup, which
is running the scan detector in operations (§4.1). We note that scan detection
represents pretty much the worst case for a distributed monitoring setup as one
needs to continuously correlate activity about many addresses across all nodes in
a timely manner. While we have not yet performed a more systematic sensitivity
analysis, we expect that we could further reduce the messages exchanged by
tuning the specifics of the update mechanism.

6 Related Work

Our design and implementation represent a generic framework that supports a
wide spectrum of network-based summary statistics. We are not aware of any
system that provides similar flexibility with an easy-to-use interface, suitable for
real-time processing in distributed deployments.

Summary statistics are widely used throughout the networking and security
communities, both in research and operations. To give just a few examples of
research efforts presenting applications and/or corresponding data structures,
the literature includes work on finding port scanners in backbones [24], efficiently
counting the number of network flows in high-speed environments [16,9], detect-
ing attacks against routers [1], computing real-time traffic summaries [15], or
identifying elephant flows [8]. However, all of these efforts remain specific to their
particular target application, while our work provides a framework on top of
which one can implement such analyses.

In operations, appliances from companies like SonicWall and Palo Alto Net-
works compute traffic summaries and break-downs, however they hardwire the
analysis performed. Several open-source utilities can apply statistical compu-
tations to network traffic, in particular NetFlow-based toolsets like SILK [22]
and flow-tools [11]. However, they remain restricted to the abstractions their
input format provides, are intended mainly for offline/batch usage, and do not
provide the flexibility of performing arbitrary computations. Splunk can compute
top-k-style statistics flexibly on different features, yet its input remains limited
to externally produced log files.

For intrusion detection, Denning pioneered statistical monitoring in her
seminal work on the host-based IDES system [7]. Today, scan detectors come with
virtually any IDS, including open-source systems such as Snort [21]. Older versions
of Bro [19] used to come with four fully separate scan detector implementations,
all targeting different traffic features and/or threshold schemes. Our summary
statistics framework supports all four directly within its unified API. We refer to,
e.g., [18,12] for a broader overview of statistical anomaly detection (as well as
other approaches). We note that while we limit our summary statistics framework
implementation to threshold-based schemes for now, conceptually it could support
further statistical approaches as well.

Cohen et al. [4] present an abstract framework for weighted sampling in
distributed settings. It is similar in intent to our work, however, it only considers
the case of sampling, and evaluates optimal algorithms for this setting. Peng et
al. [20] uses a cumulative sum algorithm to collect statistics at nodes and share
information using a machine learning algorithm. In contrast to our work, their
usage scenario is limited to cumulative sums and their evaluation focuses on
optimizing detection delays and bandwidth, not on providing a generally usable
framework for distributed summary statistics.

We use a set of probabilistic data structures to efficiently compute statistics
that traditionally would be very resource intensive to maintain on large inputs.
We choose data structures that satisfy our constraints (see §2.4), yet note that
there are further candidates. For example, there are extensions available for the

HyperLogLog algorithm that we use [10]: Kane et al. [14] propose an algorithm
with an even lower memory overhead; it however remains complex and seems
impractical to implement [13]. Heule et al. likewise propose a series of improve-
ments to HyperLogLog [13]. As our main contributions concerns the framework
itself—not individual computations—we do not further explore such alternatives,
though may do so in the future if the current implementation ever turned out to
represent a bottleneck.

7 Conclusion

In this work, we present the design and implementation of a novel summary
statistics framework for network monitoring. As one of its key features, the
framework supports computing statistics on arbitrary keys, such as IP addresses,
DNS labels, or HTTP server names. Furthermore, our design specifically targets
distributed deployment, and can thus be used in environments where sensors
are either scattered over independent tapping points, or jointly process a high-
volume link in a load-balancing setup. We assess the feasibility of our approach
by implementing the summary statistics framework on top of the open-source
Bro network monitor, and showcase a set of example applications in realistic
large-scale settings.

Overall, we consider the summary statistics framework an extensible platform
that enables research and operators to measure and quantify characteristics of
their network traffic, with much less effort than they would traditionally require
in particular in the distributed setup. Using the summary statistics framework,
users can implement powerful statistical measurements in just a handful lines of
code, and immediately deploy them for real-time processing.

Acknowledgments

We would like to thank for their collaboration Keith Lehigh and Indiana Univer-
sity; Aashish Sharma and the Lawrence Berkeley National Laboratory; Justin
Azoff and the National Center for Supercomputing Applications at the University
of Illinois; as well as further unnamed organisations that have operated early
versions of the framework. This work was supported by the US National Science
Foundation under grants OCI-1032889 and ACI-1348077; by the U.S. Army
Research Laboratory and the U.S. Army Research Office under MURI grant
No. W911NF-09-1-0553; and by a fellowship within the Postdoc-Programme
of the German Academic Exchange Service (DAAD). Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the
authors or originators, and do not necessarily reflect the views of the NSF, the
ARL/ARO, or the DAAD, respectively.

References
1. Barman, D., Satapathy, P., Ciardo, G.: Detecting Attacks in Routers using Sketches.

In: Workshop on High Performance Switching and Routing. HPSR (2007)

2. Bro SumStat Scripts & Repos. http://www.icir.org/ johanna/ sumstats
3. Bro Network Security Monitor Web Site. http://www.bro.org
4. Cohen, E., Duffield, N., Kaplan, H., Lund, C., Thorup, M.: Composable, Scalable,

and Accurate Weight Summarization of Unaggregated Data Sets. Proc. VLDB
Endow. 2(1) (Aug 2009)

5. Das, S., Antony, S., Agrawal, D., El Abbadi, A.: Thread Cooperation in Multicore
Architectures for Frequency Counting over Multiple Data Streams. Proc. VLDB
Endow. 2(1) (Aug 2009)

6. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
Commun. ACM 51(1) (Jan 2008)

7. Denning, D.E.: An Intrusion-Detection Model. IEEE TSE 13(2) (Feb 1987)
8. Estan, C., Varghese, G.: New Directions in Traffic Measurement and Accounting:

Focusing on the Elephants, ignoring the Mice. ACM Trans. Comput. Syst. 21(3)
(Aug 2003)

9. Estan, C., Varghese, G., Fisk, M.: Bitmap Algorithms for Counting Active Flows
on High-Speed Links. IEEE/ACM Trans. Netw. 14(5) (Oct 2006)

10. Flajolet, P., Éric Fusy, Gandouet, O., et al.: Hyperloglog: The Analysis of a Near-
Optimal Cardinality Estimation Algorithm. In: Proc. of the International Conference
of Analysis of Algorithms. AFOA (2007)

11. Flow-tools information, http://www.splintered.net/ sw/flow-tools
12. Garcia-Teodoro, P., Díaz-Verdejo, J.E., Maciá-Fernández, G., Vázquez, E.: Anomaly-

Based Network Intrusion Detection: Techniques, Systems and Challenges. Comput-
ers & Security 28(1–2) (2009)

13. Heule, S., Nunkesser, M., Hall, A.: HyperLogLog in Practice: Algorithmic Engi-
neering of a State of The Art Cardinality Estimation Algorithm. In: Proc. EDBT
(2013)

14. Kane, D.M., Nelson, J., Woodruff, D.P.: An Optimal Algorithm for the Distinct
Elements Problem. In: Proceedings ACM PODS (2010)

15. Keys, K., Moore, D., Estan, C.: A Robust System for Accurate Real-Time Summaries
of Internet Traffic. In: Proc. SIGMETRICS (2005)

16. Kim, H.A., O’Hallaron, D.R.: Counting Network Flows in Real Time. In: Proc.
IEEE Global Telecommunications Conference. vol. 7 (2003)

17. Metwally, A., Agrawal, D., El Abbadi, A.: Efficient Computation of Frequent and
Top-k Elements in Data Streams. In: Proc. ICDT (2005)

18. Patcha, A., Park, J.M.: An Overview of Anomaly Detection Techniques: Existing
Solutions and Latest Technological Trends. Computer Networks 51(12) (2007)

19. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Computer
Networks 31(23-24) (1999)

20. Peng, T., Leckie, C., Ramamohanarao, K.: Information Sharing for Distributed
Intrusion Detection Systems. Journal of Network and Computer Applications 30(3)
(Aug 2007)

21. Roesch, M.: Snort: Lightweight Intrusion Detection for Networks. In: LISA (1999)
22. SILK – System for Internet-Level Knowledge, http:// tools.netsa.cert.org/ silk/
23. Sommer, R., Paxson, V.: Exploiting Independent State For Network Intrusion

Detection. In: ACSAC (2005)
24. Sridharan, A., Ye, T.: Tracking Port Scanners on the IP Backbone. In: Proc.

Workshop on Large Scale Attack Defense. LSAD (2007)
25. Vallentin, M., Sommer, R., Lee, J., Leres, C., Paxson, V., Tierney, B.: The NIDS

Cluster: Scalable, Stateful Network Intrusion Detection on Commodity Hardware.
In: RAID (2007)

26. Vitter, J.S.: Random Sampling with a Reservoir. ACM TOMS 11(1) (Mar 1985)

http://www.icir.org/johanna/sumstats
http://www.bro.org
http://www.splintered.net/sw/flow-tools
http://tools.netsa.cert.org/silk/

	Count Me In: Viable Distributed Summary Statistics for Securing High-Speed Networks

