
Cryptographically Enforced Permissions for Fully
Decentralized File Systems

Johanna Amann, Thomas Fuhrmann
Technische Universität München

{ amann | fuhrmann } @ so.in.tum.de

Abstract—Distributed file systems nowadays work well in many
ways. They provide efficient solutions, for example, to distribute
data among a global team. But most systems do not address
the complex subject of secure user and group management. The
systems that do, usually offer only a very limited subset of access
permissions that is incompatible to the permissions usually used
in Unix-like systems.

In this paper, we propose a new system for user and group
management, which cryptographically enforces access permis-
sions in fully decentralized file systems. Our proposal is twofold:
an integrity verification algorithm checks the validity of the
current file system state; a cryptographic data protection scheme,
added on top of the integrity verification, preserves the privacy
of the file system content.

Except for signatures, our system uses symmetric cryptogra-
phy only. It thus incurs only a reasonable cryptographic cost in
the system.

I. INTRODUCTION

Files are important – for software systems and for people.
Files are written, read, and edited both, locally by individual
users and globally by large teams within multi-national or-
ganizations. The way to publish, share, and access the files
varies from organization to organization. Companies typically
have network drives to share the files within a local office.
Big companies can afford the bandwidth and administration
effort to use network drives globally, too. Small companies
typically use communication systems such as e-mail or instant
messaging to collaboratively edit the files. Or they use version
control systems and web-based systems to enable the team
members to access the files from everywhere.

Typically, network file systems rely on centralized com-
ponents and centralized administration. This results in high
cost for bandwidth, highly reliable components, and skilled
personnel. The goal of our work is to create an easy-to-
use, fully decentralized distributed file system that provides
transparent file access to its users. We base our work on
structured peer-to-peer techniques, because – when they are
deployed correctly – P2P systems are extremely scalable and
robust. In this paper, we go beyond these well studied aspects
of P2P file systems and address a yet unsolved problem,
namely how to realize Unix-like access permissions in such
systems.

A. Problem Statement

A Distributed File System (DFS), faces a multitude of attack
scenarios, which we have to guard against. It is not sufficient to
cryptographically secure the client connections, because there

are no trusted servers in a peer-to-peer system. Everything that
is stored on another peer has to be encrypted and signed in a
way that ensures that the data cannot be read by unauthorized
clients and cannot be tampered with.

Things get even more complicated, when we consider that
usually several users want to interact. They want to be able to
read and write certain files within the same file system. That
means that we cannot use traditional cryptographic means,
because they are not geared to multiple users. We also have
to think about group access where group membership may
change over time.

In this paper, we introduce a new file system structure. With
this structure we can implement nearly the full spectrum of
access rights, that Unix users are accustomed to, on a fully
decentralized file system. Our system is based on a “plain”
P2P file system that is unaware of users and groups. On top
of such a plain file system we employ cryptographic means
to realize users and groups. We also discuss how to add ACL
support on top of our approach.

B. Access permissions
The distributed file system should be as transparent to our

users as possible. Thus the access permissions we want to
support are modeled closely to the POSIX.1 [1] permissions
used in Linux as well as many other systems.

In more detail, we want to be able to have different users
and groups with separate access rights. A group consists of
an arbitrary number of users. A file or directory is owned by
exactly one user and exactly one group. Each user can be a
member of an arbitrary number of groups.

The users and groups of our file system do not need to
match the users and groups of the underlying Unix system.

A file has separate read and write access flags, that can be
set be separately for the user, the group, and all others who
can access the system. We assume that everyone who may
write to a file also has read permissions to the file in question.

Most systems support additional access rights on top of this
simple system. In section VI-A we will discuss other access
permissions often found in Unix-like systems and how they
could be implemented using our approach. In section VI-B
we sketch a way to implement ACLs on top of our proposed
access permission system.

C. Previous Work
The ideas we present here extend the Igor File System

(IgorFs) [2], [3], which has been developed within our group.



IgorFs is based on a structured P2P overlay network called
Igor that provides a key based routing service [4] similar
to Chord [5]. Unlike a distributed hash table, which offers
a publish/subscribe service only, our network is a service
oriented overlay network. It routes messages based on a
destination key and a service identifier. It is up to the respective
service implementation how these messages are handled.

IgorFs is one of the applications that have been built on top
of that overlay network. It uses a fully decentralized approach
without any central or special nodes. IgorFs uses Fuse [6] to
provide applications with transparent access to remote storage
resources.

IgorFs uses a distributed hash table (DHT) to distribute and
find its data. All objects in the file system are cut into variably
sized chunks, encrypted and inserted into the DHT.

Every stored data chunk is identified by an (Id, Key)-tuple.
A directory contains a list of the (Id, Key)-tuples of all the
contained files and directories. Directories are serialized so that
they can be stored in the underlying chunk storage system.

In that plain system, a user can access the whole file system,
if she can access the data chunks containing the root-directory.
From there, she can recursively access all files and directories
stored in the file system.

D. Design Criteria
Our goal is to create a fully decentralized distributed file

system (DFS), which efficiently implements Unix-like access
permissions. The following criteria guided our design:

Trust in own machine: We assume that the user can trust
his/her own machine. Scenarios where an attacker reads the
cryptographic material from the machine memory are not a
part of our threat scenario.

Untrusted storage: We assume that all other nodes in the
network are untrusted. Thus, the access rules have to be
enforced by cryptography, not by node-side policies. A client
must only be able to decrypt data for which it has the
appropriate access rights. Access rights enforcement must not
depend on a central authority or on other nodes.

Data integrity: We want to be able to prevent or at least
detect attacks on our file system, e. g. illegitimate modifications
of the data by third parties. Rollback attacks on the data in
our file system should be prevented. That means it should be
impossible to replace a current version of a file with an old
version of a file, if the client already had knowledge of the
current file version.

Data confidentiality: Users must not be able to decrypt data
that they do not have adequate permissions for.

User revocation: We want to be able to efficiently revoke
users from the system and remove users from groups without
the need for out-of-band communication.

No on-line third parties: Our scheme shall work without
requiring any third parties to be online and without requiring
specific other nodes to be online.

E. Contribution
In this paper, we propose a new way to organize the

directory structure of a fully decentralized distributed file

system. This new structure allows us to secure the integrity
and confidentiality of the data contained in the file system. A
client can verify the validity of the file system structure and
data on the fly while accessing it. Unix-like access permissions
are cryptographically enforced in the directory structure. A
malicious node is not able to read or write files for which
it does not have the necessary access rights. Even when a
malicious user controls (some of) the nodes, attacks are limited
to forking and withholding new information. The approach
presented here does not depend on any trusted nodes or
otherwise centralized components.

In contrast to other works our approach solely relies on sym-
metric cryptographic primitives to enforce the access rights
and should thus be very efficient. Asymmetric cryptography
is only used for the signature algorithms.

This paper is organized as follows: In section II we briefly
describe our idea and introduce the technical background on
which we base our work. Section III outlines our approach
for validating the data integrity in a distributed file system.
Section IV describes the handling of file access rights. Section
V estimates the overhead imposed by our proposal. Section
VI explains how to extend our approach to more sophisticated
access control mechanisms. Section VII discusses the related
work and section VIII gives the conclusions and an outlook
to future work.

II. DESIGN OVERVIEW

In our scenario, multiple, cryptographically separated file
systems can share the network and the attached storage capac-
ity. Each file system is controlled by a so-called file system
superuser. The superuser creates the file system, generates
the keys for new users and groups, adds users to groups,
removes users from groups, and removes users from the file
system. This is very similar to the certificate authority (CA)
in public key infrastructure schemes. The superuser typically
is the system administrator of your institution.

The superuser is not a centralized component in our file
system, because it does not have to be online and it is not
bound to a specific node. The superuser simply is the only
person who has the keys that are needed to perform some
special operations, which are restricted to the root user in
traditional Unix systems.

Anyone can start his or her own file system by generating
a new set of superuser keys. All such separately created file
systems are separated beyond the scope of the access rights
described in this paper: neither the superuser nor any user can
access the content of another file system. Nevertheless, the
encrypted data may share the same underlying storage, so that
(partly) identical files can be stored efficiently.

According to our design goals, this is not a security problem.
It is rather a consequence of the encryption used by the
underlying peer-to-peer storage which was already briefly
discussed in section I-C. In our system, the same data will
always yield the same encrypted data block. This means, that
if you know the unencrypted data, you can prove that a specific



node is saving an (encrypted) copy of the data. If this is
of concern, a different underlying block encryption algorithm
must be used. In our system, it remains however open, whether
the node just caches a copy, or if it actually read its content.

Our architecture consists of two tightly connected parts: The
data integrity protection and the data confidentiality protection.
Because of their complex interactions, we will explain them
first briefly in sections II-A and II-B and then again in more
detail later in this paper (sections III and IV).

A. Data Integrity

Our first goal is data integrity: We want to be able to
detect illegitimate modifications of data when accessing the
file system.

It is well known [7] that in a fully decentralized system ma-
nipulations of files or directories cannot be entirely prevented.
To implement this, it would be necessary to check each change
of the file system for validity at the moment it happens. This
is impossible without a trusted central authority that can give
us the latest state of the file system. Instead, each client has to
check the files for inconsistencies on its own. A rollback can
only be noticed when, e.g., a client that has already seen more
recent changes to the file system notices that they have been
reverted. In file systems with a large number of concurrent
users, it is a sound assumption that such manipulations will
be detected very quickly; in file systems that are only accessed
very rarely such manipulations could go unnoticed for a long
time.

Our system prevents rollback attacks in the sense that it is
able to guarantee that a client that has the knowledge of a
current file will never accept an older revision of the file and
show it to the user.

In order to do so, we change the directory structure in a way
that is transparent to the user. For the user, everything looks
like a traditional Unix directory structure (cf. fig. 1). We call
this structure, that is exposed to the user the external directory
structure.

Internally, the file system uses a completely different struc-
ture to save the directory hierarchy. We call it the internal
directory structure. This internal structure is mapped to the
external directory structure on the fly, i.e. when a user accesses
the file system. It is never directly exposed to the outside.
The internal directory structure contains more information than
the external directory structure. This information is needed to
implement the security features.

The internal structure is enhanced as follows (cf. fig 2):
each user is assigned a user-root directory. It contains all the
files belonging to that user. It does not contain files of other
users. The user-root directory of each user contains a version
number, which we can use to check each file in the directory
for validity.

The different user-directories are glued together with redi-
rects. That means that, if a user directory seems to contain
a file belonging to another user, it contains in fact only an
invisible link pointing to the real file location within the other
user’s invisible internal directory.

B. Data Confidentiality

In addition to the data integrity architecture explained in the
previous section, we also propose a new method for keeping
the data in our file system confidential.

To this end, we add a dedicated group-root directory for
each group in the system. Each group-root directory is split
into a private and a public section (cf. fig. 2). The public
section can be read by anyone, the private section is encrypted
and can only be read by group members.

The (ID, Key)-tuples for each file in our file system are
encrypted using symmetric cryptography, unless the files are
world-readable.

For each file, there are two different encrypted pointers.
The first pointer resides in the home directory of the user (see
previous section). If the file is world-readable, this pointer
is not encrypted; otherwise the pointer is encrypted with the
user’s private key, so that only the user in question can decrypt
the file.

A second copy of the pointer is placed in the group
directory; in the public section if it is world-readable or in
the private section if it is only group-readable.

If a file is modified by the file owner, the pointers in the
home directory as well as in the group directory are updated.
If another group member updates the file, only the entry in
the group directory is updated.

Thus, if a node wants to access a file, it has to check both
entries and choose the one that has been updated most recently.

Using this structure, we can map most of the Unix permis-
sions to our file system. A detailed analysis of this approach
will follow in section IV.

III. DATA INTEGRITY

In section II-A we already gave a short overview of the
steps that are taken to protect the data in our systems. This
section will give a more in depth overview of the new directory
structure.

We have to protect against several types of attacks; most
prominently we have to be aware of any unauthorized manip-
ulations of files or directories. If we detected a manipulation,
we simply abort and output an error message. Alternatively,
we could revert to an earlier revision of the file system, where
the manipulation is not present. This has the advantage of
being fully transparent to the user, but the user won’t notice
she is working with an outdated file system revision. Even
worse, if the user makes changes to the file system, the other
clients might not accept the new revision due to the still present
inconsistencies.

A. Splitting the directory-tree

As described in section II-B, in our file system, the internal
directory representation of the file system differs from the ex-
ternally visible structure. To the outside, the directory structure
still looks like the normal Unix directory structure shown in
figure 1, but internally our file system uses shadow-directories
that contain the actual files. Redirects make them visible in
their respective directories.



Name Type Use Generation

Ku symmetric user encryption key by superuser on user generation
Su asymmetric user signature key by superuser on user generation
Kg symmetric group encryption key by superuser on group membership change
Sg asymmetric group signature key by superuser on group membership change
Kd symmetric directory forward key by user or group on directory write
(Id, key)-tuple symmetric data chunk key by client upon write

Table I
KEYS USED IN THE FILE SYSTEM

/ (root) home susan Documents paper.pdf

Figure 1. Normal Unix directory structure

Each user is assigned an individual user-root directory ru,
which contains only the user’s own files. Every group gets
assigned an individual group-root directory rg , which contains
all files belonging to the group. Each file and directory in the
file system has a version number v, that is incremented upon
each change. Thus each of these user and group directories
has a version number v attached to it. All clients track the
version numbers of all user- and group directories. If a client
notices, that the version v(r) of a directory decremented since
the last access, the directory was illegitimately modified by a
replay attack.

This approach fully prevents rollback attacks for user-root
directories. In group-root directories, rollback attacks are still
possible: Assume the head version of the group directory is
vcurrent. If a node with group access is presented an old
version vold, it does not notice the manipulation, unless that
node has already read a version v′ with v′ > vold. If the node
modifies the group directory sufficiently often, namely until it
has produced a version vnew with vnew > vcurrent, all other
nodes in the file system would accept that version.

The following approach achieves fork consistency in face of
the described attack [8]: All user-roots and all group-roots are
extended with a version vector that contains the versions of
all users and groups. Upon each write, a user increments her
user-root version and updates the version vector. Upon writing
to a group, the group-root version and version vector are also
updated. Thereby, an attacker can only fork the file system.
The attacker cannot create inconsistencies.

To avoid the overhead of the version vectors, we recommend
to implement this extension only if it is actually needed.

In order to map the normal Unix directory structure to the
new internal structure, we use redirects. A redirect R is an
internal construct of the file system that points to one or
more other objects in the file system, i.e. files, directories
or symbolic links. When a node encounters a redirect while
accessing the file-system, it automatically follows the redirect
and returns the referenced object. The functionality offered
by redirects is similar to soft links in Unix. In contrast to
soft links, the link is invisible to the clients accessing the file
system.

More formally, a redirect is a n-tuple, pointing to n possible
locations for a data object by an absolute path in the hidden di-
rectory structure. A redirect may not point to another redirect.
In the case of our file system, the typical case is n = 2 for files
and n = 3 for directories. For files one of the pointers points to
the file’s location within the user-root and another one points
to the location within the group-root. For directories one part
of the redirect points to an object within a user directory. The
second and third part of the redirect point to the public and
private group directory.

B. Example

Figure 2 shows this new directory structure for our example
directory layout. The internal root directory contains a .users
directory, which in turn contains all the user-root directories. It
also contains a .groups directory, which contains all the group-
root directories. Finally it contains a .keys directory, which
contains the encrypted access keys for group access.

When a node accesses the file system, it first accesses
the visible root-directory. It is contained within the user-
root of the superuser and is named “/”. This directory has
a redirect pointing to the real home-directory, so that it seems
to have a subdirectory named home. In reality, home is not a
subdirectory of this directory, but a subdirectory of the user-
root of the superuser. (The group links have been omitted
for this directory.) The home-directory then contains the entry
susan, which once again is just a redirect to a directory inside
the user-root of the user. The home-directory in turn contains
the Documents directory. For this directory all three redirects
are shown. One points to the user-root. The other two point
to the public and private directories within the group-root.
According to their permissions files are placed in either one
of these directories in addition to the user-root.

When a user accesses the Documents directory within the
home directory of the user Susan she will follow the three
parts of the redirect and retrieve the Documents directory in
the user-root of Susan, in the public part of the group-root and
if she is a member of the group also the Documents directory
in the private part of the group-root.

Assume a file named paper.pdf that is stored within the
Documents directory. Because of its access permissions, the



file pointers are stored once in the user-root and once in the
public group directory. When a user wants to access the file,
she has to check, which version of the file is more current. To
this end, the version numbers of both files are compared and
the more recent pointers are returned. Note we use version
numbers not timestamps. Hence we do not require any clock
synchronization.

C. Securing the user-directories

The state of each user directory is secured with a Merkle-
tree [9], [10].

We already established, that each user has an own root
directory ru with a version number v(ru). We use a hash tree
to secure the directory contents of all subdirectories of ru.

All directory contents that may not be modified are hashed.
The resulting value is saved in the parent directory, which is
hashed again. This process is repeated in turn until we arrive
at the user’s top directory.

When a directory entry changes, the hashes have to be
recomputed along the path from the directory to the root, i.e.
in the parent directories of the changed directory). Assume e.g.
that Susan changes the file paper.pdf which is shown in fig. 2.
Because of this change, the entry in the directory Documents
changes and the hash-value of the documents directory also
changes. The hash-value of the user-root of Susan will also
change and she has to be re-sign it.

The validity of each directory entry can now easily be
verified by checking the signature of the user-root and the
hash-values of the subdirectories.

Figure 2 shows the hashes above the directory names.
The directories with signed hashes are drawn with a shaded
background.

IV. ENFORCING PERMISSIONS CRYPTOGRAPHICALLY

In this section, we describe how the file system enforces
the actual file permissions. I. e. we explain how users may
change the integrity protected meta-information according to
their access rights.

A. Owner access

As already said, all files that belong to a user u are located
somewhere in her user-root-directory ru. Each user has a
encryption key Ku and an signature key Su (see table I). For
world-readable files, the block pointers are stored as plain text.
For non-world-readable files, the pointers are encrypted with
the encryption key of the owner. Thus only the owner will be
able to read the file contents.

If a file is world-writable, the pointers are not included in the
Merkle tree and anyone can change them without invalidating
the structure. If a file is not world-writable and is changed by
the owner, the writer has to recompute the Merkle tree and to
sign the new top-hash with the signature key. Thus only the
owner can change non-world-readable files in the user-root.

Table II shows a few example directory entries of the home-
directory of Susan. All values printed in italics are secured by
the hash-tree, all other values are not part of the hash-tree.

B. Group access

As we already explained in section II-B, each group has
a group-root, just like the user-roots for the user directories.
The group-roots are contained in the .groups directory which
is rooted at the top-level. It works in the same way the .users
directory works: it is protected by a Merkle-tree and contains
all the files and directories that belong to a certain group. The
.groups directory is split into two subdirectories, named public
and private.

Figure 2 shows a simple example for the directory structure
containing this group directory. Note that the file system
contains the directory entry for the directory Documents three
times: The first entry is located in the .users directory. This
is the “master” copy of the directory. It works as presented
in section III-A. Two further directory entries are created in
the .groups directory, one in the public and one in the private
part.

Files are treated similarly. Each file entry is stored at two
out of three possible locations: There is always a copy in the
user-root directory. For each file that is world-readable, an
additional copy is placed in the public subdirectory of the
group. If the file is not world-readable the copy is placed in
the private subdirectory of the group. A group-member will
only be able to change the version in the group-directory, not
the entry in the user-root, which is protected by the hash tree
of the owner.

Because of this, when a file in a user-directory is requested,
any of the two copies can be more up-to-date. The file system
has to look up the entry in the user-directory as well as the
entry in the group-directory to find out, which is the more
recent one.

Each group has an encryption key, which is used to secure
the private group directory. This key is only known to the
current members of the group. Thus it has to be changed when
users join or leave the group.

The key is stored in the file system using the subset
difference algorithm [11]. It allows storing an item in a way
that enables groups of users to decrypt it with very little
overhead. This scheme requires storage costs of 1

2 log
2 N for

each user (where N is the total number of users). The message
length is at most O(g), where g is the number of users in the
group, but it can be much better under good circumstances.
The user only has to execute a single decryption.

Each time, the superuser adds or revokes a user from the
system, the file system superuser also generates a new group
key. This key is secured with the subset difference algorithm
and then stored in the file system.

The pointer of the private subdirectory is encrypted with
the group key; only this directory pointer is encrypted, all
subdirectories are not encrypted. That means, that only a
member of the group, who knows the current key, can enter
the group’s private directory.

All files, that are not world-readable are placed in the
private subdirectory of the group directory.



G

superuser

28876FF...

susan

FAD2452...

staff

6F83367...

/

837561A...

home

B55A142...

susan
B70462F...

public
67AFFE2...

private
127F3BA...

home

1B05524...

susan

7B3220A...

734B235...

Documents
8342AAB...

Documents
34B67FA...

Documents
A22A182...

Documents

.users
7A35209...

.keys

B42A6F2...

.groups
C3FB288...

paper.pdf
BD9E272...

root
9365B12...

invisible internal folder visible folder internal link

G

group encrypted

directory entry

referenced entry

Figure 2. Internal directory structure

Type Name Owner Group Permissions Version Location Forward Key Hash

Redirect Documents susan staff rwr-r- 12 (Id, Key) B2A8399... A22A182...
File Secret susan staff rw---- 5 E(Id, Key)
File Calender susan staff rwr-r- 6 (Id, Key)
File Share susan staff rwrwrw 95 (Id, Key)

Table II
EXAMPLE DIRECTORY ENTRIES FOR /.USERS/SUSAN/SUSAN/

C. Forward Keys

In Unix systems, a file or directory may only be read, if
the user has access to all directories along the path up to and
including the object in question.

Figure 3 illustrates the problem with an example: The home-
directory contains a directory named susan, which is private
to Susan. It contains a directory named Documents which
happens to be public. In a normal Unix system, we would
not be able to access this directory, because we cannot access
the parent directory. In the system described so far we could
circumvent the encryption and access the Documents directory
directly.

To prevent such an access via the hidden directory structure,
we add a directory key Kd to each directory in the structure.
This key is used to encrypt the directory contents. It is stored
in the visible parent-directory. Because each directory (except
for the root directory) has got exactly one parent directory,
there is exactly one key for each directory. In our example,
the directory susan is encrypted with the directory key of the
home directory Kd(home), and with the user-key. Documents
is encrypted with the Kd(susan) key.

Thus a user now can only access the Documents directory if
she can access the susan directory that contains Kd(susan). Kd

is changed on each write operation to a directory to prevent

users who may no longer access a directory from gaining
unauthorized access.

V. COMMUNICATION OVERHEAD AND CRYPTOGRAPHIC
COST ANALYSIS

In this section, we briefly describe the communication
overhead and cryptographic cost that our proposal adds to a
plain distributed file system. As mentioned in section I, our
work was inspired by the goal to equip an existing P2P file
system with user and group access permissions. Thus, our
design is such that it can be implemented on top of a plain P2P
file system. Each file system operation, both, in the plain and
in the so enhanced file system causes one or more operations
in the underlying P2P network. In the following, we discuss
the number of these operations as well as the associated
cryptographic cost. We especially discuss the particular case
of the P2P file system that has been developed in our group.
Other P2P file systems would lead to very similar results.

In the plain scenario, upon each file lookup, the file system
has to fetch all the directory blocks, starting from the root
block down to the directory in question. The number of
operations in the P2P network thus depends on the length of
the path we are trying to access. For a file in a subdirectory
at depth n, we need exactly n directory lookups.



root

susan

.users superuser / home

home

susan

U

U
user encrypted Documents

Documentssusan

Figure 3. Evading access restrictions without forward keys

In our enhanced file system the communication cost depends
on who owns the directories and files. Assume first a directory
structure where all directories and files belong to the superuser.
Here, we need n+3 directory lookups, because there are three
hidden directories (root, .users, superuser), which we must
read before we can read the first visible directory.

The internal links do not account to the communication
cost, as long as all the directories of a user are stored in the
user’s hidden directory. (E. g. ’/’ and ’home’ are both stored
in the superuser’s hidden directory.) This is the d = 1 case
that we used for the examples in this paper. If a user owns a
large number of directories, we need to introduce one or more
indirections, i. e. further hidden directories below the users’
directories that contain the visible directories (cf. fig. 4 with
d = 2). When taking this into account, we need at most 3+nd
lookups when all files belong to the superuser.

In a file system with multiple users, the communication cost
will be larger, because when we encounter a directory that
belongs to another user, we have to resolve an indirection. Let
u be the number of users (including the superuser) that own
directories in the path to our file. Then the communication cost
is at most 2 + u+ nd directory lookups: we have to read the
root and .users directory, the user-root of each affected user
and the n directories we traverse at depth d in the different
user-roots.

When considering the presence of groups the communica-
tion costs are even larger; when looking up a file, we have to
check if the version in the group or in the user-root is more
current. That means we have one additional lookup into the
group-root of the affected group with a cost of 3+ d lookups
(one lookup for .groups, one for the group, one for the public
or private group directory and d for the specific subdirectory)
incurring a total cost of 5 + u + (n + 1)d. In practice, many
of the affected entries can be cached, so that these numbers
should be considered as worst-case analysis.

In addition to the communication cost, our proposal also
incurs an additional cryptographic cost. We assume that in the
plain scenario all directories and files are already cryptograph-
ically protected. The file system, that we use as basis for our
work, for example, encrypts all directories and files with a
symmetric key that is stored in the directory pointing to that

file.
Besides this basic cryptographic cost, there is an additional

cost:
• Encryption and decryption of the directories with the user

or group key.
• Creation and validation of the signed hash trees for the

user and group directories.
Nevertheless, the absolute overhead of this cost is small:

Hashing is a relatively cheap operation. The underlying file
system already hashes all its file system blocks twice (plain
text and cipher text). Our proposal adds a third hash operation.

Moreover, our proposal only uses symmetric cryptography.
The underlying file system already encrypts all blocks with
AES. If a file is not world-readable, our proposal adds two
further AES encryptions per file, and one further AES en-
cryption per directory.

Only the signature verification of the hash tree adds a more
substantial cryptographic cost. However, this verification is a
rare operation: We only have to verify one signature per user-
root directory that we traverse, and we can cache the result
for subsequent operations.

VI. FURTHER EXTENSIONS

In this section, we will discuss possible extensions to the
approach outlined in this paper. These extensions are not
necessary for the basic functionality, but provide additional
features that could be important in some use-cases.

A. Differences to POSIX

Our approach, as we have presented it here, implements
parts of the POSIX.1 access permission features. There are
however a few differences, which we describe in this section.

1. In our current approach we have assumed, that a person,
that may write to a file can also read it. This does not have to
be true; in Unix there can be files that a user can only write,
but not read. Our current approach does not deal with this
scenario. If necessary it could be implemented as follows: In
addition to the symmetric key each user and group needs a
set of asymmetric keys. The public keys are published in the
file system. If a user wants to write to a file, to which she has
only write access, she uses the public key of the user or the



root

susan

susan

.users

superuser / home

media

home

susan

1

2

1

Figure 4. Internal directory structure with d = 2

group to encrypt the new file pointers. After that, she will not
be able to read the file contents via the file system, because
she is not able to decrypt the pointers herself. The group or
owner of the file however will be able to decrypt the pointers
with their private keys.

The asymmetric cryptography that is needed for this feature
introduces a high cost and complexity. It is thus advisable to
only implement this feature if it is really needed. Moreover,
the mechanism also introduces some backward confidentiality
problems when it is used with groups: The symmetric key
of the groups can be changed each time a user is added
to or removed from the group, because it encrypts only a
single directory pointer (the pointer to the private group
directory). However, files encrypted with the public key of
the group could potentially be spread throughout the whole
group directory tree. Changing the asymmetric key upon each
group change would thus take very long (each file would have
to be found and re-encrypted). But if the key is not changed,
each new member of the group can access every file that was
encrypted with public key cryptography. This includes files
that have been deleted before the user was added to the group.

2. In addition to the read and write permissions for files
and directories presented in this paper, Unix also provides the
execute flag. A person that only has a separate execute flag
on a file may run the program but may not read the binary
program data. A person that only has the execute flag on
a directory may access the directory and any subdirectories
and files in the directory she has access to. The person may
however not list the directory contents. She has to know the
exact name of the object she wants to access.

We did not try to implement that features. For files, this is
due to the simple necessity that in a distributed setting a node
must be able to read a file before being able to execute it. For
directories the problem is more serious. It might be possible
to encrypt a directory in a way that makes it possible to access
the files and directories contained within it only when the exact
file names of the items are known. We feel however that this
is out of scope for our current paper and leave this as an open
question.

3. A third shortcoming of our approach is that a user has to
be in the group the file belongs to. This is a sound assumption,
because in Unix a user may only change the group of a file she

owns to a group of which she is a member. Only the superuser
can override this restriction.

This problem can once again been circumvented by using
public key cryptography; a file could be encrypted with a
group-public key in addition to the key of the file owner.
This approach introduces the same backwards-confidentiality
problems mentioned above.

4. POSIX defines some special file permissions: to be more
exact the set-user-ID-on-execution bit, the set-group-ID-on-
execution bit and the sticky bit. The setuid and setgid bits are
easy to implement; they can be secured with the hash-trees just
like the rest of the data in the file system. The problem is the
user- and group- mapping from IDs on the global network file
system to IDs on the local system. We feel that the question
of ID mapping is out of scope for the current paper and leave
it as an open question.

Today, the sticky bit is only important when set on directo-
ries. A directory with a sticky bit set becomes append-only, or
to be more exact a directory in which the deletion of files is
only allowed by the superuser, the owner of the directory or
the owner of the file. It is not sufficient to have write access to
the directory to remove a file from it. Implementing the sticky
bit is not an easy task; we again leave it as an open question.

5. Another special case of current POSIX file systems
has been disregarded altogether in this approach, because we
consider it to be of very low importance. Moreover, in our
opinion, it introduces a privacy problem. In a traditional file
system, if a directory owned by A contains a directory owned
by B and A has no write-access to B, A may delete the
subdirectory of B, if it is empty. This even holds true, if A
may not read or access the directory in question. We chose not
to implement this special case because of the privacy problems
that it could cause. We do not want the user A to be able to
notice that a directory of B is empty, when she does not have
read access to it.

B. ACL support

The approach presented in this paper does not support
access control lists.

We will now present a method to implement ACL support
on top of our proposed design. The ACL support presented



here is based on the ACLs used in Linux, which are based on
a POSIX draft [12].

The drawback of ACL support is an increased amount of
cryptographic and lookup operations. On each change of a file
or directory, the affected pointers have to be encrypted for each
user and group that has read-permission. This means that the
encryption time rises linearly with the number of ACL entries.
The same applies to the lookup overhead; we have to look up
the directories of every user and every group that has write-
access to the data. The approach also introduces backwards-
confidentiality problems. Hence, we recommend using it only
when needed.

ACLs allow users to set more fine-grained access permis-
sions on their files and directories. In more detail, it allows
the file owner to give any other user or group read, write or
execute permissions.

To support ACLs with our system we have to modify our
encryption system to allow for these possibilities. Each file
or directory has its own symmetric key, which encrypts its
pointers. This symmetric key has to be made available to all
users and groups with read-permissions by encrypting it with
the user’s or group’s public key. For groups this means, that all
files with ACL entries are saved in the public group directory.

A second problem that arises with groups is that the
asymmetric key pair has to change with each user revocation.
We propose using the key rotation scheme introduced in Plutus
[13] for this purpose. Using this scheme, the file system
superuser generates a new symmetric encryption key ki for
the group. Current group members can derive all previous
key values ki−j from the new key; revoked members however
cannot deduce the value. The group key is saved in the file
system using the approach presented in section IV-B.

For each group revision a new asymmetric key pair has
to be created. The private key is encrypted with ki and
stored together with the unencrypted public key in a readily
accessible location on the file system. Thus, all group members
with a valid current key can determine all previous symmetric
and asymmetric keys.

This approach has the same backwards confidentiality prob-
lems we have previously discussed in section VI-A. E. g. new
group members will be able to read the content of files that
were deleted before they joined the group.

When a user other than the owner or a group changes the
file, the new version is saved in the user’s own user- or group-
root. When reading a file, the user- and group-roots of all users
and groups that may write to the file have to be searched for
most recent version. This constitutes a significant overhead.
Hence we recommend to use ACLs only when needed.

VII. RELATED WORK

Most fully decentralized file systems do not have any kind
of user management; many of them allow anyone to read the
data in the file system; typically only a limited group of people
is able to modify the data. This is especially true for many of
the early systems. For example, CFS [14] uses a file system

layout that is inspired by the directory service proposed by
Fu et al. [15], where only one person can write to the file
system, and everyone who has read access can read all data in
the system. Nevertheless, the file system layout used in CFS
has got certain similarities to our approach.

An example for a file system that integrates user manage-
ment is the Ivy file system [16]. Ivy is a log-based file system,
where each log entry is signed by a user. It is possible to
exclude a malicious user’s changes from the file system by
not accepting log files. Other than that, there is no user or
group management; each user may read or write every file in
the file system.

The Pastis file system [17] uses certificates on a per-file
basis, which does not scale very well. Also, Pastis does not
provide read-protection of any kind.

SiRiUS [18] implements a read write cryptographic access
control for file level sharing, which is layered on top of an
insecure network file system, e. g. a peer-to-peer file system.
Unlike our system, SiRiUS does not provide support for
groups of users; instead, access to a specific file can be given
to a set of users manually. SiRiUS does not try to provide a
unified file system to a set of users, instead each user owns
a separate file system. These systems can be combined with
union-mounts, but it then requires searching the file system of
every user that has access to a specific file for the most recent
version. SiRiUS is in some settings prone to certain kinds of
rollback attacks. Unlike our system, SiRiUS requires the use
of asymmetric cryptography.

Secure Network Attached Disks (SNAD) [19] and the
Secure Untrusted Data Repository (SUNDR) [8] both require
some kind of server support to enforce security.

The Keso File System [20] uses public key cryptography
to secure directories. Unfortunately, it partially relies on other
nodes to be online to verify the validity of newly inserted
information. The node that is responsible for the ID at which
the new version of a directory is saved, has to verify that the
changes to the directory are valid. If this node is malicious,
parts of directories can be tampered without anyone else
noticing, unless they retrieve the whole change history for a
specific directory.

Plutus [13] introduces a scheme that enables users to share
files for reading or writing in a cryptographically secure way.
Unlike our approach, however, Plutus does neither handle
groups, nor offer protection against rollback attacks. It also
depends on asymmetric cryptography.

The Farsite distributed file system [21] uses an approach
mentioned in [22]. Farsite uses an encryption process that
enables other users to verify the validity of the directory
entries without decrypting the data block. Unfortunately, this
approach also depends on a central entity. This so-called
directory group consists of several clients in the file system
that are trusted to a certain extent. A directory group decides if
a write request is legitimate and may be committed to storage.

Another notable approach is Wuala [23]. It uses cryptrees
[24] to securely encrypt files and directories and manage the
access to these items. But the cryptree approach has some



distinct disadvantages; it assumes that a person that can read
a directory can read any subdirectories of this directory too.
The same problem also applies to write operations.

Identity based encryption (IBE) was first proposed in 1984
[25], the first usable implementation was not available until
2001 [26]. This work has been further extended recently
by different authors, e.g. to allow attribute based encryption
(ABE) of objects [27].

In principle ABE and IBE schemes could be used to
implement ACLs in a distributed systems. To allow some
arbitrary user or group to access a file, we would just have to
encrypt the current file keys with the user- or group-ID.

However there are some serious problems when trying to
use this approach with groups: there is no efficient way to
revoke the key of only a member of a group; IBE and ABE
also are both asymmetric cryptosystems.

VIII. CONCLUSION AND OUTLOOK

In this paper we have proposed a new file system structure
to implement user and group permissions in peer-to-peer file
systems. To the best of our knowledge, our proposal is the
first that provides cryptographically enforced Unix-like access
permissions in a fully decentralized manner. Our design is
based on a hidden file system structure, which adds the
required meta-information to a plain peer-to-peer file system.

Our proposed technique consists of two tightly coupled
mechanisms: an integrity verification algorithm checks the va-
lidity of the file system state upon access; a cryptographic data
protection scheme preserves the privacy of the file system’s
content. With their help, we can handle user and group access,
as well as most of the POSIX specialties, e. g. file system
subtrees with mixed ownership. We discussed where and why
our proposal deviates from the POSIX standard. We also
described the communication overhead and the cryptographic
overhead that our system adds to a plain peer-to-peer file
system. We further examined how ACL support can be added
on top of our scheme.

Currently, we are about to release an open source imple-
mentation of our proposal. We expect that many interesting
questions arise from the practical use of our system. It would
e. g. be interesting to analyze the overhead that our system
incurs in a real-world setting. Such an analysis could indicate
further optimizations to our design.

REFERENCES

[1] “IEEE Std 1003.1, 2004 Edition. The Open Group Technical Standard
Base Specifications, Issue 6. Includes IEEE Std 1003.1-2001, IEEE
Std 1003.1-2001/Cor 1-2002 and IEEE Std 1003.1-2001/Cor 2-2004,”
in Standard for Information Technology - Portable Operating System
Interface (POSIX). Shell and Utilities. IEEE, 2004.

[2] K. Kutzner, “The Decentralized File System Igor-FS as an Application
for Overlay Networks,” Ph.D. Thesis, Universität Karlsruhe (TH), Karl-
sruhe, Germany, 2008.

[3] J. Amann, B. Elser, Y. Houri, and T. Fuhrmann, “IgorFs: A Distributed
P2P File System,” in Proc. Eigth IEEE Int. Conf. Peer-to-Peer Comput-
ing (P2P’08). IEEE Computer Society, 2008, pp. 77 – 78.

[4] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards
a Common API for Structured Peer-to-Peer Overlays,” in Proc. 2nd Int.
Workshop on Peer-to-Peer Syst. (IPTPS ’03), Berkeley, CA, USA, 2003.

[5] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions,” in Proc. ACM SIGCOMM ’01, 2001, pp. 149–160.

[6] “File System in Userspace,” http://fuse.sourceforge.net.
[7] D. Mazières and D. Shasha, “Building Secure File Systems out of

Byzantine Storage,” in PODC ’02: Proc. twenty-first annual symposium
on Principles of distributed computing. New York, NY, USA: ACM,
2002, pp. 108–117.

[8] J. Li, M. Krohn, D. Mazières, and D. Shasha, “Secure Untrusted Data
Repository (SUNDR),” in OSDI’04: Proc. 6th Symp. on Op. Sys. Design
& Impl., Berkeley, CA, USA, 2004, pp. 121–136.

[9] R. C. Merkle, “Secrecy, Authentication, and Public Key Systems.” Ph.D.
dissertation, Stanford, CA, USA, 1979.

[10] ——, “A Digital Signature Based on a Conventional Encryption Func-
tion,” in CRYPTO ’87: A Conf. Theory and Applications of Crypto-
graphic Techniques on Advances in Cryptology. London, UK: Springer-
Verlag, 1988, pp. 369–378.

[11] D. Naor, M. Naor, and J. Lotspiech, “Revocation and Tracing Schemes
for Stateless Receivers,” in Adv. in Cryptology - CRYPTO 2001: 21st
Annual International Cryptology Conf., ser. LNCS, vol. 2139. Springer
Berlin / Heidelberg, 2001, pp. 41–62.

[12] “Posix 1003.1e / 1003.2c Draft Standard 17 (withdrawn).” IEEE, 1997.
[13] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus:

Scalable secure file sharing on untrusted storage,” in FAST ’03: Proc.
of the 2nd USENIX Conf. on File and Storage Technologies. Berkeley,
CA, USA: USENIX Association, 2003, pp. 29–42.

[14] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-
area cooperative storage with CFS,” in Proc. 18th ACM Symp. Oper.
Sys. Princ. (SOSP ’01), Lake Louise, Banff, Canada, Oct. 2001.

[15] K. Fu, M. F. Kaashoek, and D. Mazières, “Fast and Secure Distributed
Read-Only File System,” in OSDI’00: Proc. 4th conf. on Symp. on Oper.
Sys. Design & Impl., Berkeley, CA, USA, 2000.

[16] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “Ivy: A
Read/Write Peer-to-Peer File System,” in OSDI, 2002, pp. 31–44.

[17] J.-M. Busca, F. Picconi, and P. Sens, “Pastis: A Highly-Scalable Multi-
user Peer-to-Peer File System,” in Euro-Par 2005 Parallel Processing,
ser. Lecture Notes in Computer Science, vol. 3648/2005. Springer
Berlin / Heidelberg, 2005, pp. 1173–1182.

[18] E. jin Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius: Securing
Remote Untrusted Storage,” in Proc. Network and Distributed Systems
Security (NDSS) Symp. 2003, 2003, pp. 131–145.

[19] E. Miller, D. Long, W. Freeman, and B. Reed, “Strong Security
for Distributed File Systems,” in Proc. 20th IEEE Int. Performance,
Computing, and Communications Conference, 2002, pp. 34–40.

[20] M. Amnefelt and J. Svenningsson, “Keso - A Scalable, Reliable and Se-
cure Read/Write Peer-to-Peer File System,” Master’s thesis, KTH/Royal
Institute of Technology, Stockholm, May 2004.

[21] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer,
“Farsite: Federated, Available, and Reliable Storage for an Incompletely
Trusted Environment,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp.
1–14, 2002.

[22] J. R. Douceur, A. Adya, J. Benaloh, W. J. Bolosky, and G. Yuval, “A
Secure Directory Service based on Exclusive Encryption,” in ACSAC
’02: Proc. 18th Annual Computer Security Applications Conference.
Washington, DC, USA: IEEE Computer Society, 2002.

[23] “Wuala,” http://wua.la.
[24] D. Grolimund, L. Meisser, S. Schmid, and R. Wattenhofer, “Cryptree:

A Folder Tree Structure for Cryptographic File Systems,” in SRDS
’06: Proc. of the 25th IEEE Symp. on Reliable Distributed Systems.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 189–198.

[25] A. Shamir, “Identity-Based Cryptosystems and Signature Schemes,” in
Proc. of CRYPTO 84 on Advances in cryptology. New York, NY, USA:
Springer-Verlag New York, Inc., 1985, pp. 47–53.

[26] D. Boneh and M. K. Franklin, “Identity-Based Encryption from the Weil
Pairing,” in CRYPTO ’01: Proc. 21st Ann. Int. Crypt. Conf. on Adv. in
Crypt. London, UK: Springer-Verlag, 2001, pp. 213–229.

[27] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-Based Encryp-
tion for Fine-Grained Access Control of Encrypted Data,” in CCS ’06:
Proc. 3th ACM conf. on Computer and communications security. New
York, NY, USA: ACM, 2006, pp. 89–98.


	I Introduction
	I-A Problem Statement
	I-B Access permissions
	I-C Previous Work
	I-D Design Criteria
	I-E Contribution

	II Design Overview
	II-A Data Integrity
	II-B Data Confidentiality

	III Data Integrity
	III-A Splitting the directory-tree
	III-B Example
	III-C Securing the user-directories

	IV Enforcing permissions cryptographically
	IV-A Owner access
	IV-B Group access
	IV-C Forward Keys

	V Communication Overhead and Cryptographic Cost Analysis
	VI Further extensions
	VI-A Differences to POSIX
	VI-B ACL support

	VII Related work
	VIII Conclusion and Outlook
	References

