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Abstract 

Much of the Internet's end-to-end security relies on the SSL protocol along with its underlying 
X.509 certificate infrastructure. However, the system remains quite brittle due to its liberal 
delegation of signing authority: a single compromised certification authority undermines trust 
globally. We present a novel notary service that helps clients to identify malicious certificates by 
providing a third-party perspective on what they should expect to receive from a server. While 
similar in spirit to existing efforts, such as Convergence and the EFF's SSL observatory, our 
notary collects certificates passively from live upstream traffic at seven independent Internet 
sites. Our data set currently includes 330k certificates extracted from 5.5B SSL sessions over a 
time interval of 6 months. The notary offers a DNS-based, near real-time query interface to the 
public that is compatible to existing systems. We will maintain the notary as an ongoing service 
to the community and plan to include further data providers in the future to extend its 
coverage. From a broader perspective, we also see our work as a case study on working 
successfully with network operators to provide researchers with real-world data. 
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1 Introduction

The Secure Socket Layer (SSL/TLS) protocol serves as a centerpiece of the Internet’s

end-to-end security, providing secure encrypted channels and authentication through

its underlying X.509 certificate infrastructure. In a nutshell, X.509 certificate authori-

ties (CAs) sign SSL1 server certificates, which clients then verify against a list of trusted

root CA certificates that ship with their operating system or client software. In practice,

most server certificates are not directly signed by a root CA; instead roots delegate

signing authority to intermediate CAs. When validating a certificate, an SSL client

attempts to build a valid certificate chain from the server certificate to one of the root

certificates it knows, including intermediates as necessary.

This system is quite brittle due to its liberal delegation of trust. All root and intermedi-

ate CAs share the authority to sign any certificate Internet-wide. Hence, the compromise

of a single intermediate undermines the entire X.509 certificate infrastructure, rendering

CAs an attractive target for attackers. As demonstrated by several recent high-profile

incidents [5, 20], an attacker typically acts as a man-in-the-middle (MITM) to assume

the identity of a well-known secure site (e.g., a bank or email provider) by serving a

malicious certificate. From the victim’s perspective, the presented certificate validates

correctly against their root store and hence the attack goes unnoticed [2]. While the

weaknesses of the current state have been widely acknowledged, there is no real solution

in sight. The security community has proposed a number of alternative PKI architec-

tures (e.g., [8, 15]); however, widespread adoption remains unlikely for the medium-term

future due to the fact that both clients and servers would have to support a new system.

SSL notaries represent an alternative approach to improve the existing state with-

out architectural changes. A notary maintains a third-party database of known server

certificates. When clients encounter a certificate, they can match it against the notary’s

version and flag mismatches as possible attacks. Notaries represent an attractive ex-

tension to the existing X.509 architecture as they introduce a non-obtrusive reputation

scheme into the standard validation process. Perspectives [24] pioneered this method

and Convergence [1] provides an improved implementation.

Our work follows this approach by offering a novel notary service for SSL clients.

However, while existing notaries build their certificate databases actively—by either

scanning the IP address space from different vantage points, or by asking users to submit

what they see [7]—we passively extract X.509 certificates from live network traffic as

observed on an ongoing basis at operational sites. As such, our notary complements

existing services by providing a near real-time perspective on certificates in actual use
by a large client population, along with further reputation information such when we

first observed a specific certificate and the number of sites that have reported it.

The key challenge with this passive approach is to ensure broad certificate coverage.

To feed our notary service, we are currently working with seven organizations that have

instrumented their border gateways with our monitoring infrastructure, uploading all

certificates they see to a central system at our institute in near real-time. As of August

2012, our data comprises approximately 4,000 hours of SSL activity from about 227k

users, with the relevant information extracted from about 5.5 billion SSL sessions total.

1 For the remainder of the paper, we will refer to either SSL or TLS as “SSL”.



With these sessions come about 340k unique certificates that our notary makes available

to the public through a DNS-based interface. As this passive data complements existing

active services, clients could use them in conjunction to maximize coverage.

The most common deployment scenario for notaries concerns web browsers, and we

support that directly by offering an interface compatible to existing systems. In addition,

we also target two further applications: integration with a network security monitor and

a validation service. First, our notary’s per-query overhead is low and hence suitable

for bulk-checking thousands of certificates quickly. This enables us to couple it to a

network security monitor that validates certificates in real-time as they appear on the

wire. Second, validation of certificates is not only CPU-intensive but also surprisingly

difficult to implement correctly. Our notary precomputes validity for all its certificates

and provides the information in its responses for clients to use.

In addition to the notary itself, we also see our work as a case-study on collaborating

successfully with network operations. The challenge of getting access to real-world

network data is a recurring theme in our research community, and our work provides

evidence that operators are willing to share data if one addresses the constraints they

face, even if performing automatic uploads of payload data to an external site.

We structure the remainder of this paper as follows: §2 presents our data collection

process and discusses our experiences working with operations. §3 gives a short high-

level overview of the data we have collected so far, and §4 presents the public notary

service we set up. §5 discusses particular design questions. Finally, §6 summarizes

related work and gives an overview of the current state of affair of X.509 certificates

before we conclude in §7.

2 Data Collection

We begin the presentation of our system with an overview of our data collection setup

now in operation at seven network sites (§2.1), and then report our experiences working

with operations at these sites (§2.2).

2.1 Collection process

Generally, we assume the vantage point of a site’s upstream border link where we

passively monitor all external traffic (see Fig. 1). We use Bro [19, 4] to extract all X.509

certificates, which detects and parses SSL connections independent of any transport-

layer ports [6]. To avoid revealing information about the collecting site, we configure

the analysis to only inspect outgoing connections. In addition to recording certificates,

we also record session-level SSL features such as timestamp, server address, cipher

in use, and a hash of the client/server address tuple. While for privacy constraints we

cannot make this additional data available to the public, it will allow us to further

study properties of SSL communication internally. We note that none of the collected

information directly identifies a client system.

We implemented this analysis as a Bro script that we give operators at participating

sites. The script uploads both the certificates and the session-level information to a



Internet
Internal 
Network

Bro
Network Monitor

Database

Outgoing SSL Sessions

Data Provider

Collector

Fig. 1. Data collection setup

central server at our research institute in regular intervals. Our seven participating sites

all operate ongoing Bro installations and added our script to their existing setups. 2

2.2 Collaborating with Operations

Researchers in our community often find operators reluctant to provide real-world data

for scientific studies. For this effort, we work with seven operational environments that

all have agreed to instrumenting their networks for recording and exporting information

in real-time, with full payload access for the analysis application. As such, we see our

work also as a case study on overcoming the hurdles that researchers often face when

interacting with operations, and we discuss our experiences in the following.

Generally, at the sites included in this study, we found operators with an interest in

supporting our effort and contributing value to the larger community. We consider such

support a crucial prerequisite as it provides sites with a motivation to invest time into the

collaboration. With that perspective, participation becomes a question of realistically

trading off benefits with the risk of unintentionally revealing sensitive information. None

of the sites took that decision lightly, yet they all eventually approved going ahead.

The key to a successful collaboration lies in accepting and addressing the constraints

that operators face. Most importantly, we design our data collection to minimize the risk

of exposing site information. We (i) limit the collected features to a subset generally

deemed low sensitive; (ii) separate between data for the public notary service and the

further session-level features that we keep private; and (iii) accept that we generally

do not control the collection setups and may hence experience artifacts such as non-

continuous time intervals and packet loss. When operators were assessing the features

we collect, their main concern was the risk of revealing specific sites their users access.

For the notary, we account for that by leaving all sources anonymous and providing only

coarse-grained, aggregated information.

2 At three of the sites, members of our team performed the system integration after receiving

administrative approval.



3 Data Sets

We now describe the data that our notary harnesses in more detail. Seven operational

network sites of different sizes provide us with SSL information, captured at their

upstream network links. Table 1 summarizes the data from each site. Our contributors

requested to remain anonymous. Most of them are research environments, with six of the

seven located in the US. As we added the sites incrementally to our effort, the individual

sets span different time periods. For comparison, we list the total hours observed at each

site (non-continuous due to occasional outages).

As Table 1 shows, our data set includes a total of 18M unique X.509 certificates

derived from several billion SSL connections. Of those, over 17 million originate from

Grid traffic3 and Tor servers4. Due to the highly dynamic and specialized nature of Grid

and Tor certificates, we exclude them from both our notary and the further discussion in

this paper. The filtered column in Table 1 shows the number of remaining certificates.

We identify Tor certificates with a regular expression. Grid certificates theoretically

could by validated by using the list of Grid roots accredited by the International Grid

Trust Federation (IGTF). However, this approach proved problematic due to holes in

certificate chains, and we hence opted to likewise use pattern matching for linking typical

Grid-related “common names” to local certificates.

We note that our data sets exhibit artifacts of the collection process that are beyond

our control. As we leverage operational setups that run our analysis on top of their

normal duties, we must accept occasional outages, packets drops (e.g., due to CPU

overload) and misconfigurations. As such, we deliberately design our data collection as

a “best effort” process: we take what we get but generally cannot quantify what we miss.

However, given the large total volume across the seven sites, we consider the aggregate

as representative of many properties that real-world SSL activity exhibits.

Comparison with Holz et al. Holz et al. [12] present the most comprehensive aca-

demic study of X.509 so far. The authors collected several certificate sets by performing

active scans from multiple locations and further derived two smaller sets from passive

measurements. We briefly compare our more recent data with their findings. In aggregate,

our data set has a comparable size—both sets comprise several 100k unique certificates.

The strength of a public key depends on the used encryption and hash algorithm as

well as the key bit length. Nearly all X.509 certificates in use today are RSA certificates.

Similar to Holz, we only see a handful of ECDSA and DSA keys in our data. For RSA,

the cryptography community discourages key lengths less than 1024 bits [3]. However,

Holz finds that their latest scan still includes 55% end-host certificates with smaller

lengths, while earlier scans included 20% more than that. For the certificates we see

this downward trend continuing: only 21% end-host certificates have such small key

lengths. When looking only at currently validating certificates (see §4.3), the number

decreases to 13%. Holz also found that the number of certificates using MD5 as an hash

algorithm is steadily decreasing. By revisiting their latest active scan, we found that

3 Grid services use certificates to identify both servers and users; most of the used certificates are

dynamically generated and have lifetimes of only a few minutes or hours.
4 The certificates of Tor servers we encountered do not seem to be used for authentication. Servers

appear to change their certificates every few minutes.



Site Certificates Connections Time

Label Type Est. Users Total Filtered Total Hours Start

US1 University 90,000 17,679,855 222,757 2,839,963,404 3,903 02/22

US2 Research site 250 154,840 22,377 40,073,665 4,603 02/17

US3 Research site 4,000 92,885 64,306 418,586,535 3,577 02/22

US4 University 50,000 327,783 185,231 2,423,110,152 4,080 02/22

X1 University 3,000 13,743 8,749 12,996,314 3,330 03/14

US6 University 30,000 18,920 17,617 13,447,775 56 08/27

US5 Gov. Network 50,000 92,361 90,053 251,646,788 3,639 03/30

All 1 227,250 18,032,041 337,721 5,581,238,098 — —

1 The total reflects the number of unique items across all sites.

Table 1. Summary of data set properties from contributing sites.

6.6% of the distinct certificates therein used MD5 hashes. In our data set, this percentage

has decreased to 3.3%, again suggesting an improvement in certificate quality.

However, the observed improvements may also come partially from our passive

collection process. Our data will not contain certificates of very unpopular (or only pri-

vately used) hosts, which might more likely use weaker keys. For example, Holz reports

seeing more than 60,000 certificates for Plesk and more than 38,000 for localhost.

In comparison, we just have 388 and 2,303 of those certificates, respectively.

Another important security measure represents the cryptographic algorithms and

key length in an SSL session. In line with Holz, we see changes to more secure algo-

rithms. RC4 with 128-bit SHA prevails as most common cipher in our data set (20%

of connections). In contrast, Holz observes RC4 with MD5 as most common cipher,

which we observe only as the fourth popular one (15% connections). Another trend in

our data shows a high number of connections using one of the different TLS ciphers

with ECDHE (21% of connections), which we attribute to Google now supporting these

ciphers in order to offer forward secrecy [14].

4 Notary Service

We now describe our X.509 notary in more detail. The setup is live and accessible to the

public, and we intend to maintain it as an ongoing service to the community.

4.1 Client Interface

Clients access the notary via DNS requests for names of the form <sha1>.notary.
icsi.berkeley.edu, where <sha1> represents the SHA1 hash of a certificate.

The notary replies with a TXT record indicating (i) the day our data providers first saw

the certificate (relative to 1/1/1970), (ii) the most recent day any of them saw it, (iii) the



number of days in between when at least one site reported it, and (iv) if it currently

validates against the Mozilla root store. 5 A exemplary query looks like this:

# dig +short txt C195[..]3358.notary.icsi.berkeley.edu
"version=1 first_seen=15387 last_seen=15582 times_seen=196 \
validated=1"

In addition to the primary interface described above, we also offer a DNS interface

compatible to Google’s (now defunct) SSL Catalog [17] at the domain cc.notary.
icsi.berkeley.edu. Existing software like Convergence can leverage it directly.

To verify compatibility to existing services, we used our notary as a Convergence

backend. This required patching Convergence to work with arbitrary DNS-based verifiers

as opposed to supporting only Google’s Certificate Catalog. We set up a local node

that interfaced to our notary and tested the functionality using the Convergence Firefox

plugin.
Furthermore, we wrote a Bro script which performs two DNS lookups per observed

certificate to both of our notary domains, recording the responses along with other
certificate details (such as subject and issuer) into a log file. The implementation proves
concise, since Bro has the capability to perform asynchronous DNS lookups; the central
lines are:

local seen = fmt("%s.%s", cert_hash, ".all.notary.icir.org");
when ( local result = lookup_hostname(seen) )
# Work with ’result’ when the asynchronous DNS lookup completes.

The script also maintains a cache with recent results to relieve the local DNS resolver.

The full version is available in Bro’s git repository6 and will become part of a future Bro

release. When running the script on a short network trace from one of our data providers,

we did not notice any performance degradations due to the extra DNS lookups.

4.2 Architecture

Fig. 2 shows the internal architecture of our notary service. When a collection site

uploads data to our institute, we first import it into a PostgreSQL database residing in a

secured network. We create a text zone file in DNSBL format [21] at an hourly basis and

transfer it over to the externally visible notary.icir.org system located in a DMZ

where we serve the zone with rbldnsd [21], a stripped-down, high-performance DNS

server commonly used for high-volume blacklist-style information.

On the central database server, we validate all certificate chains at import time and

revalidate all of them once per day to account for changes in the root-store, expired

certificates, etc. We spent significant time to optimize our import scripts for handling

information from large numbers of SSL sessions. At peak times, our data providers

upload more than a million new connections per hour. During bulk imports, we measured

the script’s maximum rate at about 100K sessions/minute for a single thread, running

5 We also support A requests and return 127.0.0.1 if an entry exists for the certificate and

127.0.0.2 if it validates against the Mozilla root store.
6 The code currently exist in the branch topic/matthias/notary.
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Fig. 2. Notary service architecture

on a Intel Xeon E5630 CPU. As certificate validation accounts for most the work, the

processing parallelizes well across CPUs.

For statistical purposes, our custom version of rbldnsd logs the timestamp of each

request, the SHA-1 hashed client IP, the geo-location of the client, and the query itself

along with the notary’s response.7

4.3 Certificate Validation

When validating certificates, we aim to match the results a typical browser would come

to. It turns out that doing so is a surprisingly involved process due to the complexities of

X.509 and the variety in certificate chains returned by the servers. In particular, many

returned certificate chains remain incomplete, which tools like OpenSSL cannot handle.

As we have not found the validation process documented elsewhere, we report the

specifics of our approach in the following. We use the Mozilla root store as our trusted

base.

When validating a certificate C from a server chain XS , we incrementally assemble

a temporary validation chain XV that leads from C to one of the roots. Once we have

such a sequence complete, we use OpenSSL to verify its correctness. If successful, we

consider all certificates in XV , including XS , as validated.

To build the chain we first match C’s Issuer against the Subject of all root certificates.

If we find a match, this completes XV . Otherwise, we examine XS for a matching inter-

mediate certificate. If found, we insert that into XV and proceed recursively. If not found,

we search for a matching intermediate across all already validated CA certificates in our

data set that have not yet expired. This step matches the behavior of typical browsers,

which cache intermediate CAs they have already encountered in past sessions in their

local certificate store.8 Certificates can include an AuthorityInformationAccess (AIA)

extension to specify an URI for intermediate certificates not included in a chain. Web

browsers parse this extension, download the intermediates, and add them to their local

certificate store. If we encounter an AuthorityInformationAccess extension, we likewise

attempt to download and use the certificates if it contains an HTTP URI (we ignore other

schemes, such as LDAP). Finally, if we have come to a complete chain XV , yet find that

7 Our rbldnsd enhancements are publicly available at https://github.com/mavam/
rbldnsd.

8 This behavior makes validation dependent on a browser’s state for incomplete chains. Indeed,

we noticed that the web server of a major research institution failed to include a necessary

intermediate certificate and thus remained inaccessible with a fresh browser installation.



OpenSSL does not accept it, we attempt to extend it further. This addresses cases where

the names of intermediates match that of a root, but their keys differ.

The presented approach seems to generally match well with what browser return.

While an exact comparison is technically difficult9, we manually checked a random

sample of 10% of the certificates our method leaves unvalidated and found no cases that

a standard browser would accept.

5 Discussion

Using DNS as the notary’s interface leverages its distributed nature for providing both

scalability and client anonymity. A client’s local DNS server will typically cache queries,

which reduces the load on our systems for frequently requested certificate hashes. Fur-

thermore, if the server recursively resolves requests, we will see its IP address on our

end, not that of the client using the notary. If users want to avoid any evidence of their

location, they can switch to public DNS services, such as OpenDNS or Google [9]. This

is different from the REST-based interfaces that Perspective and Convergence offer. The

latter implements a complex onion-routing approach to protect its clients’ identity.

Our notary’s view of the X.509 world depends inherently on the SSL activity seen

by its data providers. As currently most of them are located in the US, coverage skews

towards services accessed from there. While a highly diversified user population at these

sites helps to mitigate the effect somewhat, we are seeking to add further international

sites in the future. Doing so will also add coverage for localized services, such as CDNs.

Attackers could poison our notary’s database if they had access to one of the networks

contributing data; by establishing SSL connections to external systems under their

control, they could inject malicious certificates. As a remedy, we could add a reputation

score to the notary’s response derived from the number of sites that have seen a certificate;

alternatively we could skip certificates altogether that are not reported by a minimal

quorum of sites. We may add either of these mechanisms in the future.

6 Related Work

The recent increase of security incidents involving certificate authorities turned the global

X.509 infrastructure as an attractive subject of study. The Electronic Frontier Foundation

(EFF) popularized the study of X.509 certificates infrastructure by publishing data sets

derived from actively scanning the entire IPv4 address space on port 443 in mid 2010

and, again, in early 2012 [7]. Holz et al. [12] provide the most comprehensive academic

treatment of the SSL infrastructure we are aware of, incorporating the 2010 EFF data set

and comparing them with active and passive measurements of their own spanning 1.5

years. Vratonjic et al. [23] present a study of the X.509 certificates of the Alexa Top 1M

list. Mishari et al. [18] study 30K X.509 certificates from randomly scanning different

sets of domains. Heninger et al. [10] present a weak key study of TLS and SSH keys

retrieved by an IPv4 address space scan. They offer a weak-key checking service based

9 Specifics of the validation logic tend to be hidden deeply in a browser’s code, with no easy way

to factor it out, or access from external. Furthermore, different browsers disagree in some cases.



on their data. Our notary provides access to a novel, large-scale certificate data set to the

community and can support future research studies.

Scenarios for man-in-the-middle (MITM) attacks are, e.g., discussed by Soghoian

et al. [22]. Holz et al. [13] created a tool named Crossbear with the purpose of finding

the origin of MITM in the Internet by deploying hunters that connect to affected servers

from different origins. It is a research tool and not expected to be deployed by end-users.

Proposals to address the threat of malicious CA certificates include semi-centralized

timeline servers and cryptographic append-only data structures [8, 15]. As adoption of

such proposals is unlikely in the near future, other efforts aim to address shortcomings

and problems of the current SSL and X.509 architecture [11, 16].

7 Conclusion

We present a novel SSL notary service that provides clients with a third-party perspective

on certificates they should expect to receive from a server. While similar in spirit to exist-

ing services, we collect certificates passively from live Internet traffic at seven different

sites on an ongoing basis, providing users with a near real-time view of certificates in

actual use by a large client population. We intend to maintain the service as an ongoing

service to the community and plan to include further sites as data providers. In particular,

we recently received administrative approval from a US-wide backbone provider and are

now working with their staff to set up the monitoring infrastructure. On the research side,

our ongoing data collection will enable longitudinal studies of trends and developments

of real-world SSL usage over time, and the notary’s anonymized logs will allow us to

estimate coverage based on what we see clients querying for.
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