
Unix-like Access Permissions in Fully Decentralized File Systems

Johanna Amann∗

Technische Universität München
amann@so.in.tum.de

Thomas Fuhrmann
Technische Universität München

fuhrmann@so.in.tum.de

Current fully decentralized file systems just offer basic
access semantics. In most systems, there is no integrated
access control. Every user who can access a file system
can read and sometimes even write all data. Only few
systems offer better protection. However, they usually
involve algorithms that do not scale well, e. g. certifi-
cates that secure the file access rights. Often they require
online third parties. To the best of our knowledge all sys-
tems also lack the standard Unix access permissions, that
users have become accustomed to.

In this poster, we show a decentralized, cryptograph-
ically secure, scalable, and efficient way to introduce
nearly the full spectrum of Unix file system access per-
missions into distributed file systems. All access rights
are enforced by symmetric cryptography only. More-
over, we do not require online third parties.

Our proposal is twofold. It consists of the integrity
protection of the file system and the confidentiality pro-
tection of the individual files.

For integrity protection, we create a new directory
structure. Each user and group has a dedicated directory
hierarchy. All files and directories belonging to a user
reside in the user’s own directory structure. The same
holds true for groups. Every file or directory is refer-
enced at least two times in the directory structure: once
in the user directory hierarchy and once in the group hier-
archy. Fig. ?? shows an example for this structure where
the traditional Unix directory structure is mapped onto
this new directory structure.

A simple Merkle hash-tree secures the write-
operations. The hash of the top-level directory is signed
with a symmetric algorithm. Other users can validate the
current file system state by recomputing the hashes and
checking the signature. Using this approach we can guar-
antee fork-consistency, the highest level of consistency
possible in a fully distributed system.

For data protection, we split each group into a pub-

∗Student

lic and a private part. World-readable files are stored
in the public part of the group-directory in addition to
the owner’s user-directory. Files that are only readable
by the group are stored in the private part of the group-
directory. Files that are only readable by the owning user
are only stored in the owner’s user-directory. The private
group directory is secured with a group encryption key.
This encryption key is distributed to the group members
using the subset difference encryption scheme. When a
file-owner writes a file, the copy in her user-directory is
updated. When a group-member updates a file, the copy
in the group-directory is updated. Both places have to be
checked on access for the most recent version. The file
owner can set write permissions in her home directory.

With this scheme we can support nearly all POSIX ac-
cess semantics. Problems only arise for some rarely used
features of POSIX such as the possibility for non-owners
to remove empty directories they do not have access to.

To allow more flexible file permissions, POSIX ACLs
can be layered on top of our approach. However, as we
can show, this introduces a significantly higher overhead
and requires the use of asymmetric cryptography.

Our approach can be implemented on every kind of
block or chunk oriented storage. We currently implement
it on top of IgorFs, a fully decentralized distributed file
system developed in our research group.

IgorFs provides a decentralized storage backend for
variable-sized data chunks. Each file or directory is rep-
resented by one or more chunks. The different chunks
are identified by the hash values of their encrypted con-
tent. To access a file system within IgorFs a user needs
to know the hash and the encryption key of the file sys-
tem root. From there, hash and encryption keys can be
read recursively. Anybody can create a new file system
by creating a new (empty) root block. Multiple crypto-
graphically seperated file systems share the network and
the underlying storage facilities. Nodes can subscribe
to file systems; changes are then propagated to the sub-
scribed nodes within a few seconds.



root

.users amann amann

amann.groups staff public

private amann

amannsuperuser

/ home

home

Entry 
point

G

G

invisible internal folder

visible folder

internal link

group encrypted

directory entry

referenced entry

Figure 1: Internal directory structure


