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ABSTRACT
Deep packet inspection systems (DPI) process wire format network
data from untrusted sources, collecting semantic information from a
variety of protocols and file formats as they work their way upwards
through the network stack. However, implementing correspond-
ing dissectors for the potpourri of formats that today’s networks
carry, remains time-consuming and cumbersome, and also poses
fundamental security challenges.

We introduce a novel framework, Spicy, for dissecting wire for-
mat data that consists of (i) a format specification language that
tightly integrates syntax and semantics; (ii) a compiler toolchain
that generates efficient and robust native dissector code from these
specifications just-in-time; and (iii) an extensive API for DPI ap-
plications to drive the process and leverage results. Furthermore,
Spicy can reverse the process as well, assembling wire format from
the high-level specifications. We pursue a number of case studies
that show-case dissectors for network protocols and file formats—
individually, as well as chained into a dynamic stack that processes
raw packets up to application-layer content. We also demonstrate a
number of example host applications, from a generic driver program
to integration into Wireshark and Bro. Overall, this work provides a
new capability for developing powerful, robust, and reusable dissec-
tors for DPI applications. We publish Spicy as open-source under
BSD license.

1. INTRODUCTION
Deep packet inspection systems—firewalls, intrusion detection

systems, inline virus scanners and proxies—process wire format
network data from untrusted sources. As they work their way from
raw packets upwards through the network stack, they collect seman-
tic information from a variety of protocols, regularly going far into
the application-layer to extract, e.g., the bodies of HTTP sessions
or attachments from emails. Increasingly, DPI systems now also
proceed beyond the network level, mining file content—documents,
images, executables, and archives—for high-level context. On the
developer’s side, however, such rich analyses means writing a large
number of individual dissectors—i.e., format-specific parsing code—
for the potpourri of protocols and file formats that today’s networks
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carry. Implementing a dissector remains a daunting task that not
only proves time-consuming and cumbersome, yet also poses fun-
damental security challenges when facing real-world data that in
practice—inadvertently or maliciously—regularly fails to follow
standards and RFCs. As recent vulnerabilities in Wireshark [30],
Suricata [27], and Bro [21], demonstrate1, coming to correct and
memory-safe dissection code remains a challenge.

A range of past efforts have developed approaches and tools for
creating more robust dissectors, often automating parts of the im-
plementation process by generating parsing code from higher-level
specifications. Yet existing work in this space tends to focus on im-
proving only some aspects of the task, while rarely integrating with
efforts targeting different pieces. As a result, in practice, application
writers still approach dissectors as they always have: writing them
manually, from scratch, in low-level code. Returning to the three
examples above: Wireshark ships with hundreds of dissectors in C;
the more recent Suricata reimplements all dissectors from scratch,
once again in C and without reusing code from similar systems; and
while Bro employs a basic parser generator, it still requires extensive
custom C++ code and does not generalize to file formats.

In this work, we introduce a novel, comprehensive framework for
dissecting wire format data that integrates and unifies capabilities,
approaches, and lessons-learned from existing efforts as well as
from our experiences developing and deploying DPI software in
production. This framework, Spicy, consists of (i) a novel type-
based specification language that integrates syntax and semantics
into a unified processing model expressing a format’s meaning;
(ii) a just-in-time compiler toolchain that, from these specifications,
creates robust and efficient native code for parsing and generating
wire format; and (iii) an extensive API for applications to drive the
process and integrate its output. Spicy supports analyzing both net-
work protocols and file formats; facilitates reuse across applications;
integrates into offline and real-time applications; parses streaming
data incrementally; reassembles out-of-order data transparently; dy-
namically decapsulates inner layers; and handles and recovers from
errors. Spicy dissectors deal robustly with non-conforming input,
remain thread-safe, and support run-time introspection.

We evaluate Spicy through a set of case studies that demonstrate
dissectors for network protocols and file formats; first individually,
then in combination forming a complete stack that processes PCAP
traces all the way up to file content inside application-layer protocols.
We also show-case a number of example DPI host applications,
from a generic driver to integration into Wireshark. Finally, to
demonstrate Spicy’s potential beyond the DPI domain, we present
an HTTP proxy server employing it.

Overall, this work provides implementors of DPI applications
with a new capability for developing powerful, robust, efficient, and

1See CVEs 2016-4420, 2015-0971, 2014-9586, respectively.
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# cat smtp.spicy
module SMTP;

export type Greeting = unit {
: /220 /;

domain : /[^\r\n ]*/;
: / ?/;

protocol: /(E?SMTP)?/;
: / ?/;

software: /[^\r\n]*/;

on %done { print self; }
};

# echo "220 mx.foo.com ESMTP Postfix" \
| spicy-driver smtp.spicy

<domain=mx.foo.com, protocol=ESMTP,
software=Postfix>

Figure 1: Dissecting an SMTP greeting.

reusable dissectors for protocols and file formats. We are releasing
our Spicy prototype implementation as open-source under a BSD
license [26].

We structure the remainder of this paper as follows. §2 introduces
Spicy’s conceptual capabilities. §3 presents our prototype imple-
mentation, and §4 evaluates the framework through a set of case
studies. §5 discusses related efforts and §6 concludes.

2. THE SPICY MODEL
In this section we discuss the main elements of Spicy’s model,

with a focus on its capabilities for expressing flexible, stateful dissec-
tors. We discuss design objectives in §2.1, introduce the language
through examples in §2.2, and then walk through its main features.
Appendix 6 summarizes most of Spicy’s language elements. In the
following, we use format to refer to both network protocols and file
formats, as Spicy generally does not distinguish between them. A
host application is an application that integrates Spicy for dissecting
or assembly (e.g., an IDS).

2.1 Objectives
At a high-level, Spicy’s design targets the following objectives to

cater to complex host applications:

Declarative, high-level model. Spicy employs a type-based
style that expresses elements at the semantic level of typical format
specifications (e.g., RFCs).

Unification of syntax and semantics. Spicy expresses syntax
and semantics inside a single language, requiring external code only
for interfacing with a host application.

Support for composition. Spicy caters to layering by supporting
processing pipelines through composition.

Format-agnostic. Spicy’s model captures both network protocols
and file formats, binary and ASCII.

Robustness. Execution remains safe when facing unexpected
input, and supports error handling and recovery.

Extension and reuse. Spicy allows customization and integration
without modifying existing code.

2.2 Examples
Figure 1 shows a simple Spicy example that dissects greeting

banners of SMTP connections. Generally, a Spicy dissector comes
in the form of a module that defines one or more unit types. A unit
represents a semantic entity of the target format (e.g., a PDU). Units
consist of attributes to parse from wire format. The SMTP exam-
ple defines a single unit type, SMTP::Greeting, that specifies

the protocol’s greeting structure as a sequence of regular expres-
sions, assigning names to attributes for later access (here, domain,
protocol, and software; the others remain anonymous). Units
can define hooks that, at runtime, will execute custom code during
the dissection process. In this case, the %done hook will run once
dissecting has completed an instance of the unit, with self pro-
viding access to that instance inside the hook. Figure 1 also shows
spicy-driver, a generic driver program bundled with the Spicy
implementation that compiles a module just-in-time into executable
code and then passes its standard input to the dissector. The output
reflects the hook’s print statement, confirming that the dissector
picks out the named attributes.

Figure 2 demonstrates a more complex example: fully functional
Spicy code for dissecting tar files. The tar module defines three
units, with the export keyword marking Archive as the top-
level entry point. The module follows tar’s structure: An Archive
consists of a list of files terminated by a null byte plus padding. Each
file in turn consists of a Header followed by its binary content
(data). The Header contains meta information, such as file name
and modification time.

The tar module demonstrates a number of Spicy’s key features.
We see how the language expresses syntax and semantics inside a
unified computation model, tying them together through the unit’s
attributes. For example, for attributes of type bytes—which rep-
resent raw binary data—one can specify their length through a
Spicy expression accessing the current dissector state (see, e.g., ¶).
Likewise, &convert post-processes a just parsed attribute using
a provided expression; it stores the result rather than the original
value (e.g., · strips out trailing padding before storing the value; ¸,
in addition, turns the file size from its octal ASCII-representation
into an unsigned integer value). Inside the &convert expres-
sion, $$ references the parsed value. Hooks can further normalize
attributes (¹), and also derive additional unit-wide instance vari-
ables (i.e., synthesized attributes; º). Generally, the Spicy language
provides the elements of typical scripting languages, yet extends
standard constructs with further domain-specific features. For ex-
ample, the enum type safely converts from integers (¼), along with
boolean access returning true if matching a known identifier (¹).

The tar module also demonstrates a unit deploying look-ahead
parsing: the Archive unit expresses the archive’s content as a list
of files (½), yet without any explicit condition that would specify
when to terminate the list (e.g., a list length). However, Spicy recog-
nizes that a null byte (¾) must follow, making that the terminator.

In the following, we discuss the main capabilities of Spicy’s
language and processing model in more detail. Our discussion here
focuses on conceptual properties that the framework exposes to
users writing Spicy modules. We discuss implementation aspects
subsequently in §3.

2.3 Dissecting Data
As the previous examples show, Spicy structures modules around

units to dissect as input arrives. Unit attributes support a variety
of types for dissecting, including atomic types, containers, and
other units. Attributes often support further annotations that define
specifics of the corresponding wire format, such as byte order or the
length of lists.

In terms of atomic types we introduced the bytes type in §2.2,
which holds raw data; further types include strings, signed/unsigned
integers, IP addresses transparently handling v4 and v6, and bitsets
to address sub-byte values. As seen in Figure 2, the &convert
property converts a value according to a given expression; the at-
tribute’s type changes to that of the expression, not the one used for
parsing the wire format. When specifying an attribute as a constant



# cat tar.spicy
module tar;

export type Archive = unit {
files: list<File>; # ½

: uint<8>(0x0); # Null byte ¾
: bytes &length=511;

};

type File = unit {
header: Header;
data : bytes &length=self.header.size; # ¶

: bytes &length=512-(self.header.size mod 512)
};

type Type = enum {
REG=0, LNK=1, SYM=2, CHR=3, BLK=4, DIR=5, FIFO=6
};

bytes depad(b: bytes) { # »
return b.match(/^[^\x00 ]+/); # Strip trailing padding
}

type Header = unit {
name : bytes &length=100 &convert=depad($$); # ·
mode : bytes &length=8 &convert=depad($$);
uid : bytes &length=8 &convert=depad($$);
gid : bytes &length=8 &convert=depad($$);
size : bytes &length=12 &convert=depad($$).to_uint(8);#¸
mtime : bytes &length=12 &convert=depad($$).to_time(8);
chksum: bytes &length=8 &convert=depad($$).to_uint(8);
tflag : bytes &length=1 &convert=Type($$.to_uint()); # ¼
lname : bytes &length=100 &convert=depad($$);

: bytes &length=88; # Skip further fields for brevity.
prefix: bytes &length=155 &convert=depad($$);

: bytes &length=12; # Padding.

var full_path: bytes;

on %done {
if ( ! self.tflag ) # Default to REG if unknown. ¹
self.tflag = Type::REG;

self.full_path = self.prefix + b"/" + self.name; #º
}

};

module PrintTar;

import tar;

on tar::Archive::%done {
print self.files;
}

# tar tvf mp.tar
foobar/staff 0 2016-05-15 18:58 mp/
foobar/staff 39548 2016-05-15 18:58 mp/part01.txt
foobar/staff 39503 2016-05-15 18:58 mp/part02.txt

# cat mp.tar | spicy-driver tar.spicy print-tar.spicy
[<header=<name=b"mp/", mode=b"000755", uid=b"000771",
gid=b"000024", size=0, mtime=2016-05-16T02:58:19Z,
chksum=5100, tflag=DIR>, data=b"">,

<header=<name=b"mp/part01.txt", mode=b"000644",
uid=b"000771", gid=b"000024", size=39548,
mtime=2016-05-16T02:58:19Z, chksum=6351, tflag=REG>,
data=b"A seashore. Some way out to sea [...]"

<header=<name=b"mp/part02.txt", mode=b"000644",
uid=b"000771", gid=b"000024", size=39503,
mtime=2016-05-16T02:58:11Z, chksum=6348, tflag=REG>,
data=b"A man appears on the top of a sand [...]’]

Figure 2: Dissecting a tar file. Fully functional example. Output slightly edited for clarity.

# cat switch.spicy
module Test;

type A = unit { xa: b"a"; ya: bytes &length=1; };
type B = unit { xb: b"b"; yb: bytes &length=2; };
type C = unit { xc: b"c"; yc: bytes &length=3; };

export type Foo = unit {
switch { a: A; b: B; c: C; };

};

on Foo::%done { print self; }

# echo "b12" | spicy-driver switch.spicy
<b=<xb=b"b", yb=b"12">>

Figure 3: Examples of switch statement with look-ahead.

value (including regular expressions), Spicy expects a correspond-
ing match at the current position inside the input stream. Dissection
can also fill containers (lists, vectors) with other types, as well as
recurse into sub-units.

By default, the dissector will proceed through attributes in or-
der. However, Spicy offers constructs that alter the flow, including
marking attributes as optional with a conditional expression, and a
switch/case construct to branch according to either an expression or
the token coming next in the input stream (see Figure 3). The dis-
sector can also branch tentatively, and backtrack later if necessary.

Typically, a dissector will proceed sequentially through its input.
However, a unit can instead provide a custom bytes value to an
attribute to parse instead (e.g., to first strip an outer encoding and
then parse the result differently). Spicy also allows for random
access within data passed into a unit through methods to retrieve

and relocate the current input position (e.g., to parse DNS labels
pointing to a previous location inside the payload). Finally, sinks
represent a construct to dynamically interface independent units; we
discuss them in §2.5.

2.4 Embedding Semantics
Spicy ties a format’s semantics to its syntax, which (i) overcomes

limitations of context-free languages by enabling conflict resolu-
tion, and (ii) allows accumulating state for the host application to
leverage. To capture semantics, Spicy deploys two mechanisms
that work in tandem: (i) hooks embed semantic actions into a unit
that execute at well-defined times during processing; and (ii) unit
variables persistently record derived state information (similar to
“synthesized attributes” in attribute grammars [12]). We have already
introduced %done hooks in §2.2, which execute once a unit finishes
parsing. A corresponding %init is provided for initialization logic.
Furthermore, one can associate hooks with any unit attribute, which
will trigger right after they receive their values. For example, the
code excerpt in Figure 4 dissects HTTP header lines with additional
processing for Content-Length using a hook on value.

Spicy provides further hook types for error handling, stream
reassembly, and debugging; we discuss them below. For modu-
larization, one can add hooks to a unit externally by qualifying
the identifier accordingly (as with PrintTar in Figure 2). This
works across module boundaries and facilitates application-specific
customization without touching existing grammars. For implement-
ing hooks, Spicy’s language provides similar statements as other
high-level scripting languages, including control flow constructs for
loops and branching, operators overloaded by argument types, and
an object-oriented model operating on types via method calls. We



type Message = unit {
[...]
var has_body: bool &default=False;
var content_length: int<64> &default=-1;

};

# Define regular expressions.
const Name = /[^:\r\n]+/;
const WhiteSpace = /[ \t]+/;
const Value = /[^\r\n]*/;
const RestOfLine = /[^\r\n]*/;

type Header = unit(msg: Message) {
name : Name;

: WhiteSpace;
: /:/;
: WhiteSpace;

value: Value;
: RestOfLine;

on value {
if ( self.name.lower() == b"content-length" ) {
# Record information in parent unit (see text)
msg.has_body = True;
msg.content_length = self.value.to_uint();
}

}

Figure 4: Recording state in unit variables.

do not discuss these language elements in detail in this paper.
Typically, hooks inspect or modify state that dissectors accumu-

late. Through the self keyword, hooks have access to all attributes
available so far, as well as to the current values of unit variables.
Units can access parent units higher up in the parse tree through unit
parameters (similar to “inherited attributes” in attribute grammars);
see, e.g., the msg parameter in Figure 4. Spicy also provides global
state that persists across individual dissectors. This enables correlat-
ing information over time, for example for associating requests with
replies or performing reassembly across input streams.

2.5 Composing Units
Many formats rely on nesting: after stripping off an outer layer,

one finds more data to dissect, typically now in a different format.
Network protocol stacks represent the standard example, yet many
file formats exhibit similar structures (e.g., tar archives contain more
files; images may contain EXIF information). Spicy supports de-
capsulating such chains in two ways: statically via attributes of a
corresponding sub-unit type, and dynamically through a dedicated
sink data type. The former naturally expresses hardwired hierar-
chical relationships (File::Header in Figure 2 is an example).
The latter provides a dynamic interface between independent unit
instances, potentially from different modules. Conceptually, sinks
operate like pipes: an outer unit writes wire format data into a sink,
to which an inner unit attaches for dissecting it. Figure 5 shows
a dissector for HTTP message bodies as an example, defining the
sink data for decapsulating the content. After dissecting the HTTP
message headers, the code informs the sink of the body’s MIME
type. Spicy’s runtime then dynamically attaches an instance of a
unit that can handle that type; the two candidates in the example are
JPEG for image/jpeg, and tar for application/x-tar.
Subsequently, as Message extracts the body, it forwards the data
to the sink for dissection using the -> operator.

A unit type can declare support for one or more MIME types. If
there are multiple unit types associated with the same MIME type,
the sink will attach them all, each receiving a copy of the data (we
use this mechanism for content identification; see §2.7). Even
though we use the term “MIME type” here, we extend its traditional
file-centric notion to a more general naming scheme for dissectors by

type Header = unit(msg: Message) { . . . }

type Message = unit {
headers: list<Header(self)>;
: /\r?\n/; # End of header
body: bytes &length=self.content_length

-> self.data; # Pass to sink.

on headers {
# Activate units by their %mimetype.
self.data.connect_mime_type(self.content_type);

}

var data: sink; # Sink receives the body content.

# Variables set when parsing Headers.
var content_type: bytes; # MIME type.
var content_length: uint<64>; # Body length.

};

type JPEG = unit { %mimetype="image/jpeg"; . . .};
type tar = unit { %mimetype="application/x-tar"; . . .};

Figure 5: Dissecting HTTP message bodies dynamically through
sinks. (Units simplified for illustration.).

introducing Spicy-specific top-level media types. For example, for
application-layer protocols operating on top of TCP, we define types
of the form tcp/<port>, where <port> represent a protocol’s
well-known port (e.g., the HTTP dissector declares %mimetype
= "tcp/80"). With that convention, the TCP dissector can use a
corresponding connect_mime_type("tcp/<port>") call
to dynamically dispatch processing by port.

In addition to this dynamic dispatching, sinks can also statically
connect to a specific target unit. This can, e.g., be useful when
decapsulating layers in a single protocol like necessary for record
fragments in TLS.

For further flexibility, Spicy extends the sink model with three
additional capabilities. First, sinks can preprocess their input before
passing it on. Currently, our implementation supports two such
filters: base64 decoding and unzipping. Second, in addition to the
arrow operator, there is also an explicit write() method offering
more fine-grained control. In particular, write() can associate
sequence numbers with the input, in which case the sink will inter-
nally put the data in order before passing it on. In §4.2 we use that
for implementing TCP stream reassembly. Sinks provide a number
of options for fine-tuning out-of-order processing, including defin-
ing initial sequence numbers as well as knobs and hooks to handle
gaps and ambiguities. Finally, writers can insert meta-information
in the form of positional marks into the sink’s data, e.g., at PDU
boundaries. This is, e.g., helpful for resynchronizing after errors by
skipping ahead (see §2.6).

2.6 Error Handling and Recovery
When processing untrusted input—such as packets arriving on the

network or files attached to incoming emails—robustness is key for
ensuring integrity. Spicy provides a secure execution environment
for catching errors, as well as recovery mechanisms to continue pro-
cessing afterwards. Spicy defines a well-defined, statically type-safe
environment that prevents unintended data and control flows. The
language mediates all memory accesses, and the runtime garbage
collects memory automatically. Spicy differentiates between two
kinds of errors: parse errors and logic errors. Dissectors trigger the
former when encountering input not aligning with their units. They
propagate up the unit tree, giving upper levels a chance to handle
them; if unhandled, they become fatal. Logic errors trigger on cod-
ing mistakes, such as an out-of-bounds array access or a division by



type Requests = unit {
requests: list<Request> &synchronize;

};

type Request = unit {
request: RequestLine;
message: Message;

};

type RequestLine = unit {
%synchronize-at = /(GET|POST|HEAD) /;
method: Token;
: WhiteSpace;
uri: Token;
: WhiteSpace;
: /HTTP\//;
version: /[0-9]+\.[0-9]*/;
: NewLine;

};

type Message = unit { ... }

Figure 6: Resynchronizing at the next HTTP request.

zero. Logic errors abort immediately, passing control back to the
host application.

Units can handle parse errors in one of two ways. First, they
can define explicit %error hooks to execute, for example to set
an internal flag or clear state. Second, a dissector can define a
recovery strategy that resynchronizes processing at a subsequent
point within the input stream. For that, it needs to add a pair of
annotations. First, one unit defines a strategy to skip ahead in the
input stream to a position where it could resume dissecting after an
error. Consider HTTP as an example: if, e.g., a gap occurs due to
packet-loss inside a pipelined HTTP session, a reasonable strategy
might be jumping ahead to the beginning of the next HTTP request.
Figure 6 implements this in RequestLine, which defines a regular
expression to scan for in that case through the %synchronize-at
property. Second, a higher-level unit annotates an attribute with
&synchronize to allow that to initiate the process; in the example,
that is Requests::requests. With these two in place, when an
error occurs while dissecting a Request, Spicy will propagate it
up to Requests::requests. There, it will determine the next
attribute that would normally get parsed; here, another Request.
Examining the parse tree down from there, Spicy will find that
RequestLine supports resynchronization. Accordingly, it will
begin looking for its regular expression, skipping ahead in the input
to the first location that matches. Once found, normal processing
will resume by dissecting a Request.

In addition to using regular expressions, Spicy’s recovery mech-
anism also supports scanning for other resynchronization hints,
including constants and meta information embedded into the input.
For example, a better resynchronization strategy for HTTP would
be skipping ahead to the next request that also aligns with the be-
ginning of a TCP packet; this avoids false positives when an HTTP
body happens to contain content resembling a request (the canonical
example is downloading HTTP RFCs). To implement that, the TCP
dissector would insert marks into the input stream corresponding to
packet boundaries for the HTTP dissector to skip ahead to.

2.7 Dynamic Format Detection
Spicy can identify the appropriate dissector for an input stream

by inspecting its the content. While traditionally, DPI applications
used to rely on well-known ports for choosing an application-layer
dissector (“if it’s on port 80, it must be HTTP”), a significant portion
of traffic now uses non-standard ports—sometimes deliberately to
evade monitoring systems. File formats face a similar challenge, as

their file extensions can be misleading. Some applications thus resort
to content inspection for identifying types (via, e.g., libmagic; or
“content sniffing” in web browsers).

Spicy’s identification approach generalizes Bro’s Dynamic Proto-
col Detection (DPD) [5], which follows a simple idea: given that
the application already has dissectors for the relevant formats, just
let them all try to parse the input; the one that succeeds will have
implicitly identified the format, whereas the others will likely bail
out quickly. We integrate this scheme into Spicy by providing it with
a variant of the connect_mime_type sink method (see §2.5).
Like the original version, the variant attaches all matching dissectors.
However, it initially runs them in a trial mode, in which a parse error
does not trigger normal error handling but instead silently disables
the dissector. Units can exit trial mode by calling a confirm() method
once they deem it reasonably certain that they indeed “own” the
input; usually that will be after parsing a few attributes successfully.
For further customization, Spicy also offers two hooks that trigger
on confirmation and when a dissector gets disabled, respectively.

We add another optimization phase to this identification process.
As fully activating all potential dissectors can turn out expensive,
units may first quickly scan the input heuristically to see whether it
roughly resembles their expectation. We reuse Spicy’s resynchro-
nization support here (see §2.6): In trial mode, if a unit that attaches
to a sink also defines a resynchronization strategy, it will begin its
processing in resynchronization mode. If it finds the corresponding
hints, it will switch to the standard dissector—just as during error
recovery, except that it will remain in trial mode. If resynchroniza-
tion fails to find its hints, the unit will silently disable itself.2 This
approach offers an additional novel capability: By starting out in
resynchronization mode, dissectors can start processing input mid-
stream even when a host application has missed the beginning. This
solves a common problem of DPI systems, which typically cannot
analyze long-lived connections already active at start up.

2.8 Assembling Wire Format
In addition to dissecting data, Spicy also supports the opposite

direction: assembling wire format data according to a unit’s layout.
To use that, a host application can either pass in unit instances with
attributes appropriately prefilled, or start with data dissected previ-
ously. The latter enables making semantic changes to input in wire
format, such as anonymizing user names and passwords inside a con-
nection’s payload, or replacing individual values with variations for
fuzzing or regression testing. In the spirit of Pang et al. [19], Spicy
leverages the observation that productions in context-free grammars
can not only drive a parser, yet also a generator for the language
they define. However, different from [19], Spicy’s unification of
syntax and semantics allows supporting any Spicy module, whereas
the past effort requires significant additional low-level, per-format
customization work.

For simple cases, Spicy can reverse the dissection process directly.
Consider the SMTP example in Figure 1: to assemble the banner,
one can concatenate the attributes in the order that parsing takes
them apart. To demonstrate this, we extended the spicy-driver
program so that after dissecting input, it proceeds to put it back
together. Executing this with the example input in Figure 1 indeed
returns the original input back. Furthermore, if we add a statement
self.version = b"Spicy" to the %done hook—which ex-
ecutes after dissection, yet before assembly—the output changes

2 For more efficient matching, Bro’s DPD compiles all its regular
expressions into a single finite automata; an optimization that we
plan to add to Spicy, too. Spicy’s scheme is, however, more general
than the corresponding phase in Bro, which hardcodes scanning for
regular expressions.



accordingly to 220 mx.example.com ESMTP Spicy.
Assembly works automatically for units that do not rely on seman-

tic expressions or actions for control flow or attribute access. The
tar module in Figure 2 is close to that, however the &convert
annotations prove problematic because the unit stores their results,
not the values that the dissector extracted originally. Furthermore,
if one modifies the derived value of Header::full_path, the
change will not carry over to the fields that contribute to it, prefix
and name (º in Figure 2). For such cases, Spicy allows to augment
a unit with help for the assembly process. First, one can anno-
tate hooks and fields for consideration only during dissecting or
assembling, allowing to fine-tune the two use cases. This solves
the full_path problem, as one can add an assembly-only hook
that breaks the value back down, writing into self.prefix and
self.name. Second, for &convert attributes, one can add a
corresponding &convert_back expression for reversing the com-
putation. In tar::Header, this could pad Header::name back
to 100 bytes. In some cases, Spicy can indeed derive the reversal
automatically. For example, our implementation reverses enum
conversions (e.g., ¼ in Figure 2).

2.9 Debugging Support
Even with a high-level language, writing dissectors can remain

challenging if a format is complex or ill-documented. Spicy sup-
ports the development process with debugging facilities that it can
optionally compile into dissectors it generates. First, one can mark
hooks as pertaining to debugging, in which case dissectors will
only include them in development builds, yet omit them from pro-
duction code. Debug hooks can, e.g., print additional output for
tracing state updates, or perform consistency checks helping with
development. Second, during development builds, dissectors also
include additional code to log their progress at runtime, recording
names and values of individual attributes as they parse or assemble
them. This provides visibility into the process and makes it easy to
pinpoint locations where input or output deviates unexpectedly. A
more detailed version of this output can also report internals of the
dissection and assembly processes, such as current productions and
look-ahead symbols (see §3).

3. IMPLEMENTATION
We now discuss our implementation of Spicy. While still a proto-

type, the current system provides all functionality discussed in this
paper. We focus on the main conceptual parts of the implementa-
tion: the Spicy architecture, the backend for emitting machine code,
generation of dissectors, and the C API for host applications.

3.1 Objectives
For the implementation we target a set of system-level objectives

to ensure that Spicy can indeed support real-world host applications:

Robustness. Spicy-generated dissection code remains robust
against unexpected, potentially malformed, input.

Stream processing. Spicy’s dissectors process input incremen-
tally, without buffering beyond tokens.

Just-in-time compilation. The Spicy toolchain compiles dissec-
tors on the fly as a host application starts up.

Thread-safety. Dissectors are reentrant and thread-safe, and
hence support concurrent processing.

Integration. Host applications integrate and control Spicy dis-
sectors through a comprehensive C interface.

Efficiency. Spicy targets high-volume settings, with performance
similar to manually written dissectors.

3.2 Backend
Spicy deploys our HILTI abstract machine [25] as its backend for

code generation. HILTI provides an abstract machine model with
instruction set and data types tailored to the networking domain; as
well as a compiler toolchain, built on top of LLVM [28], that turns
HILTI programs into optimized native code. HILTI fits Spicy well,
as it provides much of the low-level functionality the system needs.
We achieve several of our objectives through HILTI. First, its safe,
memory-managed execution environment provides the robustness
for Spicy’s dissectors; by expressing their logic inside HILTI’s
model, they benefit from its runtime guarantees. Second, HILTI
supports just-in-time compilation through LLVM. Third, HILTI’s
execution model comes with concurrency support, is thread-safe by
design, and generates code with a performance generally aligning
with hand-written code.

Indeed, our original HILTI work in [25] already includes parsing
as a use case: We employed an early version of Spicy (then still
called BinPAC++) as one of the example applications for evaluation.
Spicy itself was, however, not part of that effort’s contribution—we
utilized it only to verify viability, correctness, and performance of
the HILTI abstract machine. For this work, we use that earlier code
as our starting point for developing a more powerful system. We
emphasize that we consider Spicy’s novel abstractions and capabil-
ities as our main contribution here, not the specific HILTI-based
implementation.

3.3 Architecture
Internally, the Spicy implementation consists of two main compo-

nents. The code generator compiles Spicy modules into intermedi-
ary HILTI code; it consists of about 30,000 lines of C++ code. The
runtime library provides static functionality to the generated dissec-
tors, as well as the API for host applications; it consists of about
2,500 lines of C code. Applications like, e.g., spicy-driver
from Figure 1 integrate both these components: Applications (i) em-
ploy the compiler to translate Spicy modules to HILTI; (ii) use
HILTI’s toolchain to generate machine code; (iii) link that against
the runtime library; (iv) instantiate a dissector; and (v) pass input
into it.

3.4 Code Generation
Spicy’s code generator constitutes the core of the implementa-

tion. While a large part of it constitutes an application of standard
parsing technology, Spicy’s approach is unique in that its dissectors
represent a hybrid of two traditional parsing schemes. Traditionally,
parsers in the networking domain tend to operate without an explicit
lexer phase. While that approach is efficient and of low complexity,
it puts more burden on the programmer to ensure deterministic pars-
ing in ambiguous situations. Recall the list Archive::files
in Figure 2. Normally, a dissector would need to express the look-
ahead for the end marker explicitly in its code, whereas a lexer-based
parser could instead predict the correct final production itself. Spicy
combines the two approaches—with and without lexer—by integrat-
ing a lexer into the generated parsers, yet only at places that need
to choose between productions. Spicy’s parser generation proceeds
in two steps: Spicy first derives a context-free grammar (CFG) for
each top-level unit. For each grammar, it then generates a non-
backtracking recursive-descent LL(1) parser, in the form of HILTI
code closely following the production structure. Figure 7 shows the
CFG for a simple example unit dissecting a sequence of strings foo,
terminated by a string bar followed by a final 64-bit integer. At
runtime, the dissector code extracts tokens as needed. For example,
when dissecting _Foo_foo, the dissector matches the regular ex-
pression [Ff]oo against the current input position, without prior



type Foo = unit { foo: /[Ff]oo/; };

type Test = unit {
foos : list<Foo>;
bar : /[Bb]ar/;
count: uint<64>;
};

Grammar:

_Test_foos → _Test_foos_1
_Test_foos_1 → _Foo _Test_foos_2
_Test_foos_2 → _Test_foos_1 | ε
_Test_bar → /[Bb]ar/
_Test_count → <uint<64>>
_Foo → _Foo_foo
_Foo_foo → /[Ff]oo/

Figure 7: A unit as a left-factored right-recursive grammar. Non-
terminals with underscore; without otherwise.

tokenization as there is no alternative choice. Likewise, when in
_Test_count, the dissector directly extracts the next four bytes
and interprets them as an integer value. The more interesting case
is _Test_foos_2, where the dissector needs to decide which
alternative to follow. To that end, Spicy determines at compile time
the first terminal in each alternative’s derivation.3 In the example,
there is only one for the first case: on [Ff]oo, the dissector fol-
lows _Test_foos_1. Hence, it will match this expression at the
current position and either proceed accordingly if found, or end the
production. (The look-ahead sets must be recognizable tokens; if,
e.g., we removed bar from the unit, the lexer would need to identity
a uint<64> for making the decision. As, however, one cannot
make that decision by just looking at bytes without further context,
Spicy would reject the unit.)

In practice, Spicy uses different types of productions, with some
catering to specific Spicy constructs (e.g., a loop production captures
sequences of predetermined length). We considered supporting more
general LL(k) grammars, but the additional complexity did not seem
justified. Another alternative would be using bottom-up parsing, as,
e.g., Yacc, deploys. Yet, the recursive-descent structure fits well
with Spicy’s semantic capabilities, as the dissector generator can
insert expressions and actions into the corresponding dissecting
functions. Likewise, recursive-descent can support unit parameters
easily by extending function signatures accordingly.

Spicy’s dissectors operate fully incrementally so that host ap-
plications can pass them input in arbitrary chunks. The dissector
will process the data as far as possible, advance its internal state
accordingly, and return back to the host application for more input.
Normally, it will buffer input only at the token level (e.g., if dis-
secting a 64-bit integer, it will buffer up to 4 bytes). While even
this could be avoided, that would increase complexity of the gener-
ated code without much benefit. The one case where the dissector
needs to buffer larger amounts of input is random access: if a unit
uses Spicy features that may need to seek back before the current
position, that data must remain available (an example is dissecting
DNS labels with pointers referring backwards). Internally, Spicy
dissectors achieve incremental processing by maintaining a sliding
window over the input stream. At any time, two HILTI iterators
mark the current start and end positions, with the former moving
ahead as the dissector processes bytes, and the latter advancing as
the host application adds further data. HILTI’s garbage collection
releases the memory as soon as it becomes unreachable.

3We deploy the standard methodology for LL(1) parsing here (i.e.,
compute FIRST_1 and FOLLOW tables). See, e.g., [9] for details.

3.5 Host interface
We provide Spicy with a flexible API that enables host applica-

tions to compile dissectors, pass in data for processing, and access
the results. An application can perform the compilation step either
offline ahead of time, using the Spicy toolchain; or just-in-time at
startup using Spicy’s C++ API. For each dissector, the host appli-
cation receives a pointer to a C function that initiates parsing. For
incremental processing, a second C function handles resuming once
a new chunk becomes available. If assembly is requested, a third
function provides that.

There are two approaches for the host application to access a dis-
sector’s results. Most directly, the dissector’s parse function returns
a pointer to a C structure with attributes corresponding to the unit
definition, including a suitable C prototype of the struct type. In that
structure, the Spicy type of each attribute maps to a corresponding
C type, using either C equivalents for simple atomic types (e.g, a
Spicy int<64> maps to a C int64_t), or C-level representations
of Spicy’s higher-level types, along with corresponding accessor
functions through the runtime library (e.g., there’s a C-level list
type corresponding to Spicy’s lists, with functions to iterate over the
elements). Spicy reuses most of these C data types from HILTI’s
runtime, extending them where no direct equivalent exists (e.g., for
sinks).

Spicy’s hooks provide the second approach for accessing dissec-
tor results. As hooks can call out to external C functions, a host
application can provide custom callbacks by linking in its own C
runtime library. It would then add corresponding hooks to the unit
that trigger these callbacks. To help tie back a callback’s execution
to the host application’s state, the top-level C dissector function
accepts a user-supplied “cookie” parameter that it will transparently
pass through the dissector to all custom C functions. The callback
approach is most suitable for processing streaming data, as it can
pass on information continuously by triggering callbacks as soon as
the information becomes available, vs. making the results available
only at the end of the dissection process.

The Spicy runtime library provides comprehensive introspection
capabilities. While some applications may hardcode the use of spe-
cific dissectors, Spicy becomes most powerful with generic host
applications operating on arbitrary Spicy modules. Indeed, most of
our examples in §4 are of that type. In that setting the application
must learn at runtime which dissectors it has available, how to use
them, and how to interpret their results. Accordingly, the Spicy run-
time provides access to a dissector registry that reports all available
units along with further meta information, such as the MIME types
associated with them.

4. EVALUATION
As Spicy aims to support a variety of formats inside real-world

applications, we consider as its primary contribution the combina-
tion of a comprehensive language model with a flexible integration
mechanism. Consequently, we evaluate the system with an empha-
sis on the formats and applications it can support. In addition, our
implementation comes with a test suite of almost 300 unit tests
verifying correct operation. In the following, we first discuss ex-
periences writing a set of standalone dissectors for Spicy in §4.1.
In §4.2 we chain dissectors into a complete stack and §4.3 demon-
strates assembling wire format by anonymizing DNS traffic. In §4.4,
we present a set of host applications integrating Spicy, including
Wireshark, Bro, and an HTTP proxy.

4.1 Dissectors
We examine Spicy’s support for different types of formats by

developing dissectors for a diverse set of network protocols and



Protocols BACnet (ASHRAE/ANSI 135), DNS,
Ethernet (IEEE 802.3), PCAP, HTTP, IPv4,
RTMP (handshake), SSH (banner),
SMTP (greeting), SMB2, TCP, TLS, TFTP,
UDP

File Formats ASF (headers & metadata), ASN.1,
Gzip (header), ZIP (header), MS Certificate
Store, Tar, X.509 certificates

Table 1: Dissectors we have implemented in Spicy.

file formats. Table 1 summarizes the dissectors we have imple-
mented; we make their Spicy source code available online as part
of the Spicy distribution [26]. As we were developing them, we
identified a number of common patterns where Spicy proves par-
ticularly helpful. To begin with, the language’s rich types enable
concise and robust code. For example, turning integers into enu-
meration values via &convert allows later switch statements
to branch via descriptive labels, while automatically catching unex-
pected values. More generally, &convert’s postprocessing sim-
plifies a range of cases, from turning ASCII-encoded numbers into
actual integer values (e.g., file sizes in tar) to rendering timestamps
human-readable (e.g., converting Gzip’s UNIX times into Spicy’s
time type). Bitfields provide access to arbitrary bit ranges inside in-
teger values, which is helpful for many binary formats, such as with
DNS’ flags. All of Spicy’s types handle byte order transparently
and allow for switching on the fly if necessary (e.g., PCAP specifies
byte order dynamically in its header). Spicy’s ability to feed data
it has already processed back into dissectors for other fields and
units, proves powerful for expressing complex relationships (e.g.,
ASN.1 uses variable length byte strings with different interpretations
depending on a preceding tag; and DNS’ label pointers refer back
to earlier data).

Spicy’s support for state management provides a second common
building block. At the attribute level, Spicy’s expressions enable
custom computations to drive decisions and results (e.g., the HTTP
dissector derives from a previous header the character sequence
that represents a MIME multipart boundary; RTMP computes the
length of fields dynamically; TLS disables inspection of record-
layer payload once encryption activates). At a higher level, Spicy
enables a module to maintain state over the lifetime of a session. A
common example is defragmenting PDUs—a task that many proto-
cols require, yet traditionally remains challenging for implementors.
Historically, TLS client and server software in particular comes
with a track record of defective record layer defragmentation (e.g.,
[16, 17, 6]). Our Spicy TLS dissector implements record defrag-
mentation robustly within just 41 lines of Spicy code, out of of
a total of 404 for TLS. The BACnet dissector deploys a similar
desegmentation scheme.

Finally, Spicy facilitates reuse. While we currently do not share
significant functionality between our dissectors—a result of striving
for diversity—it will be possible to import them into other for-
mats (e.g., any dissectors needing ASN.1 can import that module).

Overall, we find that Spicy significantly simplifies the process
of implementing dissectors. We were able to implement the Spicy
X.509 dissector in about 330 lines of code total, split between 145
lines for dissecting certificates and 180 for ASN.1. For comparison,
Bro’s corresponding code requires 550 lines even though it out-
sources the actual certificate parsing to OpenSSL (i.e., 550 lines just
for using their API to obtain the information). As another example,
we originally wrote the Spicy dissector for the Microsoft Certificate
Store format [15] out of an actual need when we were unable to find
an external tool parsing it. Using Spicy it took us about 15 minutes
to extract the certificates to disk.

PCAP

Ethernet

HTTP

PCAP

MS-Cert

BACnet

IPv4

UDP

TCP

DNS

TLS X.509

Figure 8: Spicy protocol stack.

4.2 Composition
Next, we use Spicy for dissecting complete protocol stacks. For

this, we implemented a dynamic stack of dissectors that parses
network captures starting from PCAP traces up to files contained in
application-layer protocols. We implemented this stack fully inside
Spicy, using dissectors from Table 1. Figure 8 visualizes the data
flows that we support for this case study.

The setup deploys the two composition methods we discuss in
§2.5. First, we choose to statically interface the dissectors for PCAP,
Ethernet, IP, and TCP/UDP. A packet trace first enters the PCAP
dissector, which splits into three units. The first two parse the global
PCAP file header, including identifying its byte order; the third
dissects individual packets. For each packet, a switch statement
branches to link-layer dissectors according to the data link type (only
Ethernet currently). The Ethernet dissector then branches again
based on the EtherType (only IPv4 currently). The IPv4 dissector
repeats this process once more, passing the IPv4 payload on to either
UDP or TCP, depending on the protocol field.

The TCP dissector performs TCP stream reassembly. It maintains
a global map associating connection 4-tuples with sinks for the cor-
responding sessions, initializing a sink’s initial sequence number
from TCP headers. The dissector then writes the payload of subse-
quent packets to the corresponding sink, passing on their respective
sequence numbers. That way, if packets arrive out-of-order, Spicy’s
runtime will automatically reorder their payloads.

For the application-layer, we deploy dynamic composition via
sinks, as that allows extending dissectors independently and also
enables dynamic format detection (see §2.7). For this case study,
our stack remains port-based, though, using the generalized MIME
types from §2.7 for choosing dissectors (e.g., udp/53 for DNS).

For our case study, we experimented with composing several
of the application-layer dissectors from Table 1. For UDP, we
added both DNS as well as BACnet to the stack and verified that
they work correctly. For TCP, we added HTTP and TLS to the
stack, both of which further decapsulate content through their own
internal sinks. The HTTP dissector extracts message bodies, passing
their content on to file dissectors based on the MIME type that
the HTTP message specifies. To test this, we added the dissectors
for the Microsoft Certificate Store and X.509 certificates to the
stack. We recorded a packet trace of a web session downloading
a copy of the Windows XP certificate root store and verified that
the combined PCAP/Ethernet/IP/TCP/HTTP/MSCS/X.509 stack
correctly extracted the certificates. As a final example, we looked
at TLS, which passes server certificates on to X.509. We created a
PCAP file containing an HTTP connection that, in turn, contains a
download of another PCAP file containing a TLS connection. We
could indeed parse the certificate information out of the inner PCAP.



4.3 Anonymization
In §2.8 we discuss Spicy’s support for assembly: turning dissec-

tion around to produce wire format from unit specification. To test
this, we extended our DNS module with support for anonymizing
IP addresses and labels inside resource records. We choose DNS
as an example of a common binary protocol with some particular
idiosyncrasies. Starting with the DNS module originally developed
only for dissecting, we identified two locations where Spicy required
hints for reversing the process. First, when dissecting lists of labels,
the original code did not store the final null byte, hence omitting
it during assembly; we changed the unit to maintain it. Second, as
the DNS format overloads a label’s first two bytes to signal com-
pression, we added an assembly-only attribute to adjust output for
that distinction. In total, we added or changed 4 lines out of the
module’s 127 lines of code.

With that in place, we can proceed with anonymization. We added
two new library functions to Spicy: sha256 hashes a bytes value,
and anonymize_addr permutates IP addresses; both take seeds
for randomization. Then we defined two short hooks:

on DNS::Label::label {
# Hash label in RR into bytes value of same length.
self.label = sha256(self.label, b"seed", |self.label|);

}

on DNS::ResourceRecord::a {
# Permutate IP address in RR with seed.
self.a = anonymize_addr(self.a, 42);

}

Running this through spicy-driver now modifies labels and
IP addresses in DNS payload on standard input.

We note that this example remains a bit simplified: by keeping the
length of labels the same, we ensure that the DNS pointer structure
does not change. However, with more assembly-specific logic, Spicy
could adjust the pointers as well to lift that constraint.

4.4 Host Applications
We next turn to Spicy’s support for host applications, examin-

ing as case-studies a tcpdump-like tool, integration into Bro and
Wireshark, and an HTTP proxy.

spicy-dump. We wrote a simple tool, spicy-dump, that prints
out a format’s attributes in human-readable format—similar to
tcpdump and tshark for network traffic. However, unlike these
tools, spicy-dump does not hardcode any formats, yet operates
generically with any Spicy module. The following excerpts shows
the Spicy SMB2 dissector on a WRITE_REQUEST command:

# cat writerequest-payload.dat | spicy-dump smb2.spicy

<header=<protocol=b"\xfeSMB", head_length=64, [. . .],
status=(Severity=Success, Customer=0, [. . .]),
command=WRITE, flags=(ResponseToRedir=0, [. . .])
[. . .]>

message=<request=<write=<structure_size=49,
data_offset=112, data_len=512, file_id=<
persistent=b"\xfd\x00\x00\x00\x00\x00\x00\x00",
volatile=b"\x99\x00\x00\x00\xff\xff\xff\xff">

[. . .] >>>>

spicy-dump can also produce machine-parseable output in
JSON format, turning it into a preprocessor for other applications.
Internally, spicy-dump leverages Spicy’s introspection API to
identify the dissectors available, and the attributes they provide.

Bro. We have integrated Spicy into Bro, which enables the sys-
tem to dynamically add new dissectors at startup by loading and
compiling Spicy modules. To the Bro user, Spicy’s dissectors re-
main transparent: They hook into Bro’s event engine similar to
the system’s traditional protocol analyzers, sending events to Bro’s

Figure 9: Wireshark using Spicy dissector plugin.

scripting language for passing on information. Indeed, combin-
ing Spicy’s language for specifying protocol dissectors with Bro’s
language for expressing higher-level analyses tasks creates a flexi-
ble platform that no longer hardcodes any major part of the traffic
analysis pipeline. We implemented the Bro integration reusing the
interface layer that we developed for evaluating HILTI in [25]. That
layer allows an external protocol parser to dynamically define the
events that it will provide to Bro’s event engine. We have confirmed
that Spicy’s parsers operate inside Bro as expected, and skip further
details on the integration here as it remains conceptually similar to
the previous work.

Wireshark. We have integrated Spicy into Wireshark by develop-
ing a proof-of-concept Wireshark dissector plugin that works with
any Spicy module. Figure 9 shows a screenshot of Spicy’s DNS dis-
sector operating inside Wireshark. At startup, our plugin compiles
Spicy modules just-in-time, and then extracts names and attributes
of all top-level units using Spicy’s introspection API. Spicy dis-
sectors can convey their well-known ports to a host application by
defining a %ports unit property. Our Wireshark plugin registers
them accordingly with the Wireshark core, so that it receives control
for corresponding packets. For each packet, it executes the unit’s dis-
sector function and then iterates over the resulting attributes, adding
each to the GUI’s tree display. Currently, our Wireshark plugin
supports UDP protocols; extending it further would just require
interfacing appropriately with more of Wireshark’s dissector API.

HTTP Proxy. Finally, we implemented a proof-of-concept HTTP
proxy in C++ that deploys Spicy for HTTP dissection and assembly,
using a stripped down version of the full HTTP Spicy module. The
proxy receives HTTP client requests via its listening socket; parses
them through the HTTP::Request dissector function that Spicy
compiles; retrieves the HTTP method and path, as well as the Host
header; adds a custom Connection-Proxied header to the
dissected message; establishes a connection to the target server;
reassembles the request (including the new header) through the
HTTP::Request assembly function; and finally sends that out
to the target server. Once the server’s replies, the same process
proceeds in reverse to forward the response to the client. (The proxy
again dissects and assembles the reply, even though in this case
it does not further modify its content.) We also added an internal
cache to the proxy that records previous replies in reassembled wire
format, to return for identical requests.

The HTTP proxy demonstrates how Spicy can support server



applications. The main part of the proxy’s implementation concerns
managing inbound and outbound TCP connections. The code for
protocol parsing and assembly consists only of function calls to the
corresponding Spicy functions, which significantly reduces the lines
of code compared to a manually written proxy.

4.5 Performance
Evaluating the performance for a generic system like Spicy can

be difficult, as it remains challenging to compare it to other systems
typically hardcoding similar functionality while tailoring its logic
specifically to their setting. While we consider Spicy’s capabili-
ties the main focus of this work, we derive confidence about its
performance characteristics from two observations. First, concep-
tually, it is indeed HILTI that determines most of Spicy’s runtime
performance characteristics. As Spicy leverages the work from [25]
as a starting point, it also inherits the promising baseline perfor-
mance we observed there. Second, we performed a load test using
the HTTP proxy application (see §4.4), which stresses both dissec-
tion and assembly code. We proxied connections against a local
web server running Nginx 1.4.7 on a machine with 16 Intel Xeon
E5-2650 CPUs, serving a static HTML page of 3,700 bytes. We
performed the test using ab [1], the Apache HTTP server bench-
marking tool, in single-thread mode. Because our proxy prototype
is single-threaded, we limited ab to issuing requests sequentially.4

With caching disabled, our proxy could sustain 676 req/sec; enabling
caching increased that number to 2,505 req/sec. For comparison,
with no proxy in place, Nginx could sustain a baseline of 3,403
req/sec, indicating that the proof-of-concept proxy already fares
well in comparison with a highly optimized web server implemen-
tation. (Note that the proxy performs the parse/assembly process
twice, once for the request and once for the response.)

5. RELATED WORK
Our work provides a platform for dissecting network protocols

and file formats that integrates results and experiences from a range
of previous efforts. Generally, grammars represent the standard way
to specify parsing strategies. General-purpose parser generators—
such as Yacc, Bison, and Antlr—compile grammars into parsers
that applications then integrate. However, their domain-independent
nature comes with conceptual and technical limitations that render
them an ill fit for dissecting protocols and file formats.

Approaches specific to the networking domain sometimes
work from Augmented Backus-Naur Form (ABNF). For example,
Zebu [4] generates parsers from annotated versions of ABNF. How-
ever, more commonly in the networking domain applications repre-
sent formats as collections of types, which they then make accessible
programmatically. As Fisher et al. observe [8], since types can de-
scribe both external and in-memory representation simultaneously,
it proves natural for programmers to define data layouts in that form.
Examples of type-based systems include: PacketTypes [14], which
compiles PDU specifications into corresponding C dissectors, with
a focus on matching packets to a particular protocol; DataScript [2],
which generates Java libraries for dissection and assembly from
specifications of binary file formats; BinPAC [20], a “yacc for net-
work protocols” that turns protocol specifications into C++ parsers;
PADS [7], which targets C and focuses on robust error handling, a
variety of encodings, and tool support; and GAPA [3], an interpreted
system that emphasizes type-safety and absence of infinite loops
during the dissection process. Spicy also follows the type-based
approach, generalizing it beyond what these systems can express.

4As the code that Spicy generates is thread-safe, it would be straight-
forward to parallelize the proxy implementation.

To the best of our knowledge, BinPAC is the only of these type-
based systems that enjoys a broad deployment base today, due to its
integration into Bro [21]. A number of later efforts extend BinPAC
in specific ways. For example, UltraPAC [13] narrows the target
application to improve efficiency; and Schear et al. improve its
memory management [24]. Spicy takes a conceptually different
approach from BinPAC by unifying syntax and semantics inside a
single language, in contrast to depending on user C++ code to steer
parsing and track state. Yet, the BinPAC/Bro combo inspired Spicy:
we generalize port-independent protocol analysis [5] and extend
Pang et al.’s work [19] to assemble wire format.

A variety of further related tools and projects exist. Haka [10] is
an open-source security-oriented language for describing protocols
and policies. It avoids the pitfalls of C by relying on Lua—which,
however, leads to an unnatural mapping of Lua’s low-level con-
structs to protocol elements. Hammer [11] is a C library for building
recursive-descent LL(k) parsers for (primarily) binary protocols; a
Hammer dissector consists of C code that parses elements through
individual Hammer function calls. While Hammer provides bind-
ings to other languages, performance then suffers and integration
into existing systems becomes more difficult. Microsoft’s Open
Protocol Notation [18] provides a description language that enables
modelling protocol architecture, behavior, and data. It comes as part
of a complex system of .NET classes, and seems to primarily target
extensions for Microsoft’s Message Analyzer. Conceptually how-
ever, their language is powerful, sharing features like decapsulation
and LL(1) parsing with Spicy. Scapy [23] enables writing protocol
dissectors in Python if performance is of no concern.

As another category of related efforts, tools such as Protocol
Buffers [22] and Thrift [29] facilitate object serialization. However,
with these, one defines a format, rather than dissecting one.

On the backend side, Spicy leverages the HILTI [25] system,
a domain-specific abstract machine model with a corresponding
open-source compiler toolchain. HILTI provides Spicy with low-
level abstractions and idioms for code generation, as well as with a
safe, concurrent execution model. The measurements in [25] assess
parsing performance operating on top of HILTI. The contribution
there, however, concerns the low-level abstract machine model, and
the discussion thus treats parsing at the level of the much more
limited BinPAC system.

6. CONCLUSION
This work presents a novel framework for dissecting and assem-

bling wire format data from high-level specifications, enabling DPI
applications to support a wide range of protocols and file formats
robustly and efficiently. Different from existing efforts, Spicy’s
language tightly couples syntax and semantics, and more generally
integrates previously separate concepts and capabilities into a uni-
fied model. Spicy comes with a compiler toolchain that generates
code for host applications, relieving their programmers from the
error-prone, low-level work that this task entails. Spicy also facili-
tates reuse of dissectors, enabling applications to benefit from others
who have already implemented support for a format.

Going forward, we will continue this work in two directions. First,
we aim to advance our implementation from its current prototype
state to production quality code that can support the demands of
high-performance network environments. Second, as Spicy captures
a format’s semantics in high-level terms, we see significant potential
for employing domain-specific compiler optimization strategies that
adapt Spicy’s output to specifics of the target setting, for example
by removing analyses of elements that a host application does not
need.
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A. SUMMARY OF THE SPICY LANGUAGE
Unit Syntax
<name>:<type> [<attribute annotations>]
[[>]{<hook-code>}] Attribute to dissect/assemble according to type; execute

hook after dissection, or before assembly (w/ >).

<name>:<type> if(<cond>) Skip attribute if <cond> is false.

<name><<type> [...]; Attribute to use only when dissecting.
<name>><type> [...]; Attribute to use only when assembling.

switch(<expr>) {<cases>} Branch on expression value.
switch { <cases> } Branch on look-ahead token.

on <attribute> { <code> } Alternative form of attribute hook.
on %<unit-hook> { <code> } Predefined callbacks; see top right.

var<name>:<type>[=<expr>] Define instance variable; unset by default.

Inline unit properties
%byteorder=<expr> Default byte order for unit.
%description=<expr> Textual description of unit/dissector.
%mimetype=<expr> Content type for attaching to sinks.
%port=<expr> Well-known port for host application.
%sync-(after|at) = (<regexp>|<mark>|<object>)

On error, continue at/after hint.

Types
addr, bitfield, bool, bytes, double, enum, int<N>, interator<T>,
interval, list<T>, map<T_1,T_2> regexp, set<T>, sink, string, time,
uint<N>, unit<T_1,...,T_n>, vector<T>

Unit Hooks
%confirmed Unit confirmed input format.
%disable Unit disabled due to not parsing expected format.
%done Unit finished dissection/assembly.
%error Parse error occured.
%gap(seq,len) Sink reassembly reports gap.
%init Unit begins dissection/assembly.
%overlap(seq,s1,s2) Sink reassembly reports overlapping segments.
%skip(seq) Sink reassembly skipped over data.
%synced Error recovery has succesfully resynchronized.
%undelivered(seq,d) Sink reassembly failed putting data chunk in order.

Attribute Annotations
&length=<expr> Parse attribute from next N bytes.
&byteorder=<expr> Assume given byte order.
&bitorder=<expr> For bitfields, define bit order.
&convert=<expr> When dissecting, replace value with expression.
&convert_back=<expr>When assembling, replace value with expression.
&default=<expr> Initialize attribute with default expression.
&chunked For bytes attributes, store data incrementally.
&eod For bytes attributes, take all until end of input.
&ipv4/&ipv6 For address attributes, parse as IPv4/IPv6 address.
&parse=<expr> Parse attribute from data that expression returns.
&transient Allow optimizing by not storing attributes values.
&synchronize Allow synchronization here after parse errors.
&try Remember current position for later backtracking.
&count=<expr> For containers, parse given number of elements.
&until=<expr> For containers, parse until expression yields true.
&while=<expr> For containers, parse while expression yields true.
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